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Lo one requiring Lewige extremization of W = masg, kg
algabr gorithn ig used L0 oM Wi = el flew, tonnes/Mr
pute minimum and minfimun divect~ o = angle of attack, deg
rating-cost “'1?@, with range n% 2 DAY = path angle, degy alr specific heal radic
, for an = anergy Increment, m
aircrafi. ¥ = bime increment, min
L perform fupetion, the 404,01 = Mach number and 117h coefficient eorvece
sting of airspeed and esngins tien Lo drag cosff c’Pn':
setting, b ey tong of the ey In & = incresental variation or nresaurs Pactor
soth olimb descent 1oas near the maximum 5 = temperature Pactor
or cruise energy. This is also trus for the BTOL A = crulse efficiency, kg/km
alreraft except in the descent where at one sner i# = minimum value of the oruisge efficiency,
level a neerly cons ‘Paﬁt energy dive segmert o ke fkm
elding & disoc in the airvspeed st That = netusl power setting, kilc
energy. The re this gment appears I = air density, kg;"mg
tha relatively flow abt 1dle power of i = fuel '*?‘mh&af’? coefficd
engines used by roraft.  Use of a T~ = atmospheric tempevabure, “K
fled trajectory & inates the dive Ineresses = f;‘h;m?arr} sea level atwospherie temperature,
the fuel consumption of total descent trajectory LY
19 sut 10 percent and time te Plv the descent
by about 19 percent ac ;mpco,fﬁd to the optimum
S = crulse, corvected, or climb
dn =
& = direct 7 e =
dollna rc;;’tr"'p i =
Do = sonstant cost component of in =
o8} = fuel-independent component of N mex =
dollars min =
= coefficient ot =
= 't drag coef up =
= cost of fuel, cents
= coefficient Superscrints
= per unit light time, dollars/hr
= drag, i ") = time derivabive
= total m ! =
P e =
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of the increaging energy segment, and Ty, I8 the
time at atart of the devreanné cnergy segment,
The rate of change of energy, £, is given by BEg. (4]
Since i speed 1s constant in cruis the
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1dle {see figs, € through 4). In 1dﬁition, if the
range to he coverad {ig 1argér than W57 ¥m, s cruise
segment at Y. = 226 m/sec and H. = 10 km will be
present,

It has heen found that irrespective of a given
range, the minimm-fuel flight profiles can be
replaced by approximsting trajectories that consist
of only two segmentz: (1) & climbk at maximum climb
power >e+ting and 152.% m/sec equivalent sirspeed
(748) and {2) a descent portion at idle and 128 m/sec
(FAS). The change from the clinb to the descent DoT—-
tion is made at an energy level which pives the
dezired range, The total fuel consumption assocci-
ated with the approximating trajectories is about
1.5 percent higher than that of the minimum-fuel
flight profiles.

ALTITUDE, km

Minimum Time Profiles

200 400 . Minimum time trajectories, which correspond to
RANGE, km o = 0, are shown in figures 6, T, and & along with
trajectories for the other o values, For this
Fig., T Altitude-range profiles, OU0L airveraft. cage, figure B shows that power is either at idle or

at maximum. The switch from maximum to idle occeours
in the decreasing energy regimen when the airspeed

hag decreased to ngax, the airspeed al the maximum
g - op energy point. During a part of the descent the air-
’ .p; speed follows the design dive flight placard of an
d8 o EAS of 238 m/sec,
B
Bl
é g 4 The structure of minimum time Flight profiles
3 can algo be derived from the observation that the
o fnﬂct’ﬁﬁ to be minimized at each energy level is
.2 - % " Ye % 1 Fhe
) [1 -~ (viy ]/IV( D} where Mnx = 1/3 iz the
GtA®~§ et % 5 velooity assoclated with the maximmm energy of the
ﬁnup.?RACﬂQN GF ﬁndn-?ﬂAC+M& oF particular trajectory. DBDuring descent, 1f
CLIMB RANGE DESCENT RANGE Vo< VEmax’ the minimizing value of the power setting

iz at idle; on the other hand, if V » Vwmax’ the

g

Fig. § Fercent throttle setting versus percent olimb
or deszcent range coversad with an O00-km fixed minimizing value is the maximum power setiing,
range, 0L alircraft.

Minimum DOC Profiles

Hermalized throttlie veriations versus norma-

1ized range are plotted in figure 5 vhere T is By letting distance be & parameter, = apectrum

the actual rotor revolutions in krpm; I, = 3,95 of optimm frajectories from minimm time to minimum

Frpm is the 1dle throttle setiing, I axl Lg maximmas  fuel may be obtained as ¢ 1ls varied from zerc to
throttle setting for C.2 £ o < 1 a is the 1. The time~fuel tradecif generated by this spec-—

cruise throttle setting for 0 < = S 0.2 frum iz plotied in figure @ for several distances,
is the disztance from the maximum snergy point It ia characteristic that these tradeoff curves
approach a horizontal slope near 9 = 1 and a verti-
cal slope near o = 0, Given the relative dollar
these curves with the costs of time and fuel one can use Bg. {5) to calou~
“u?reapeﬂds to the cruise late the value of O < g < 1 whichk will minimize the
It ig seen that as ¢ -+ 0 the DGC,  Tn addition, if the range is also specified,
lop range ocovered st omaximm then the time and the el can he read from ffgurw
nereases and the L-%ctLbn 1 9, As an example, sssume 13.2 cents/kg fuel co
at idle *5”0tt3 and $306/hr time cost, tvpical Coﬁts for the cners—
tlon of this peartieculasr alroraft, Then the corre.
sponding value of o will be /7 :
falls roughly on the ¥Wnee of the
tradeclt curve of flgure 9,

divided by R and K is the equivalent fraction
up dn
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Fig. 11 Altitude~range profiles, STOL sircraft,
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The steeply diving portions are probably
caused by the high values of flight-idle thrust,
and hence fuel flow teo the engines providing
powered 110t for this STCL alreraft., At low alti-
tudes, where the fuel consumption is high, fuel
usage is mininmized by degcending at high speed and
then decelerating to the final enevgy so raptdly as
pogsible.

The high speeds at low altitudes and the large
celerations and flight-path angles encountered in
the descent are unacceptsble for passenger alrcraft,
One possible constralnt, which provides an accept-
ahle suboptimm trajsctory for approximating the
minimum~fusl case, iz illustrated by the dashed
lines in figure 12, For ascent, the indicated air-
spged was restricted to a maximam of 130 m/zec {250
knots) and for descent the limit was chomen to fit
the envelope of the upper porticas of the desecent
gegmenta,  This Limit provides fairly smooth transi-
tions between the constrained and uncongtrained
portions,.

Minimum Time Profiles

The minimomn-time profiles in figure 12 are sime
ilar to those shown for the CIOL alreraft, The
iongest range trajectory (106L km} just reaches the
minimum bime-cruise energy. The horizontal pore
tions result from constraining the altitade tc be atb
least 150 m; the initlal and final enerpy levels
were 1.5 km, Maxipum thrust is required almost
during the entire trajectoery, exeept during the
final horizontal segment for V ¢ VY, when 1t must
be at Tlight-idle. The maximum spesd during descent
i limited by the drag increage with Mach number
rather than by & control cemstralint. The magni
of the flightepath angle never exceeds 4°.
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speed segrment during descent, A less severe speed
constraint for descent (e.g., the cne used for
agcent) would provide a cost nesrer the optimum 1f a
satisfactory transition could be made to the optimum,.

Sinece the ascent portions of the optimum and
constralned trajectories are almost ldentical, it is
degirable to compare costs only durding the descent
portion. The lower alrspeeds In the constrained
trajentory resulted In lower magnitudes of fiighte
path angle and energy rate, which in furn produced
a larger range snd longer flight time for descent
from a given maxinum energy. Por the case of the
maximum energy equal to the optimum crulse energy,
the ranges were equalized to 891 km by sdding an
appropriste cruise zeetion to the optimam traiectory.
In this case, the constrained descent reguired about
19 pereent more fuel and 19 vercent more time than
the minimum-fuel cruise snd descent covering the
same range,
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