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ABSTRACT | Traffic flow management (TFM) 

allocates the various airport, airspace, and other 
resources to maintain an efficient traffic flow 

consistent with safety. TFM is a complex area of 

research involving the disciplines of operations 

research, guidance and control, human factors, 
and software engineering. Hundreds of human 

operators make TFM decisions that involve tens 

of thousands of aircraft, en route air traffic control 
centers, the Federal Aviation Administration’s 

System Command Center, and many airline 

operation centers. This paper provides an 
overview of how TFM decisions are made today 

and challenges facing the system in the future, 

and reviews modeling and optimization 

approaches for facilitating system-wide modeling, 
performance assessments, and system-level 

optimization of the national airspace system in the 

presence of both en route and airport capacity 
constraints. 
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I. INTRODUCTION 

Civil aviation is a vital sector of the U.S. 
economy. In 2004, air transportation and related 
industries generated an output of $1.4 trillion, 

employing 12 million people in the United States 
[1]. The National Airspace System (NAS) 
provides the infrastructure needed for the 
operation of civil aviation in the United States and 
refers to all the hardware, software, and people 
involved in managing air traffic in the United 
States. Presently, more than 50,000 commercial 
flights operate in the U.S. airspace alone on a 
typical day. The capacity of the airspace is limited 
by the ability to detect conflicts between aircraft 
and to resolve them in a safe manner. The NAS 
barely meets today’s traffic demand and results in 
large delays, especially in the presence of bad 
weather. The Air Transport Association, a group 
representing airlines, estimated the cost of delays 
to airlines in 2005 at $5.9 billion [2]. Demand for 
air transportation has seen a sixfold increase in the 
past 30 years, and estimates call for a strong 
average growth rate of 4.7% during the next 20 
years [3]. This increase in demand will put a 
further strain on the airports and the airspace, 
resulting in large delays and a breakdown of 
airline schedules. 

The conflict detection and resolution task is 
referred to as “separation assurance” and is 
performed by air traffic controllers with the help 
of decision tools. Traffic flow management (TFM) 
is the planning of air traffic to avoid exceeding 
airport and airspace capacity while making 
effective use of available capacity. TFM in the 
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current system is procedure-oriented, done at 
several levels, and uncoordinated. 

The capacity improvements needed to meet 
the future demand for air transportation may not 
be achieved by making incremental changes to the 
current operations. Along with the enhancements 
of NAS capacity, improvements are required in 
the TFM procedures, such as assigning 
predeparture delays to flights, rerouting, and 
imposing spacing between aircraft. Major changes 
are needed with increased levels of automation in 
a highly safety-oriented environment with new 
roles for automation, controllers, and pilots. To 
address the changes required in the air 
transportation system, the United States has 
created a multiagency Joint Planning and 
Development Office (JPDO) to lead the required 
transformations. To facilitate this transformation, 
the JPDO is developing a comprehensive concept 
of operations [4] that advocates operations based 
on four-dimensional aircraft trajectories. 
Separation assurance is a safety function that is 
performed on a time scale of minutes, whereas 
TFM is an efficiency function that is performed 
over hours. Both separation assurance and TFM 
depend on the ability to predict aircraft trajectories 
and use modeling and optimization to increase the 
levels of automation to achieve capacity gains.  

This paper reviews the algorithms and models 
that will facilitate system-wide modeling, 
performance assessments of the NAS, and system-
level optimization in the presence of both airspace 
and airport capacity constraints. Section II 
provides an overview of TFM under current-day 
operations and introduces the primary traffic flow 
management initiatives, personnel involved with 
decision-making, and key challenges. Since TFM 
is a complex area of research involving the 
disciplines of operations research, guidance and 
control, human factors, and software engineering, 
the scope of this current paper is stated in the 
Section II. Recent advances in system-level 
modeling are discussed in Section III, and metrics 

for assessing the performance of the NAS are 
discussed in Section IV. Approaches for 
optimizing the flow of traffic in the presence of 
airport and en route constraints are discussed in 
Section V, and concluding remarks are provided in 
Section VI. 

II. OVERVIEW OF TFM TODAY 

TFM as practiced today can be viewed as a 
distributed, hierarchical process. As shown in Fig. 
1, the airspace in the United States is divided into 
20 centers plus Alaska and Hawaii. The centers 
are subdivided into sectors [5], [6]. For example, 
the high-altitude sectors in Oakland Center (ZOA) 
are depicted in the insert appearing on the left side 
of Fig. 1. At the top level, the Command Center 
uses predictions of traffic to form a strategic plan 
over a 1–24 hr time horizon [7]. Based on the 
expected weather conditions and demand in the 
different regions of the airspace and airports, the 
Command Center may delay some aircraft at 
airports and/or reroute others. Regional 
adjustments to these plans are developed by the 
different centers with a look-ahead time of 
approximately 20 min to 2 h and take advantage of 
the reduction in errors due to shorter prediction 
intervals. These adjustments are done through 
local rerouting or by spacing aircraft in a stream, 
referred to as miles-in-trail (MIT). The number of 
aircraft entering a region is inversely proportional 
to MIT. MITs are used in increments of 5 mi, and 
a value ranging from 10 to 30 mi is routinely used 
to reduce congestion. The current TFM has a 
hierarchical and distributed control structure and is 
shown in Fig. 2. Dispatchers and air traffic 
coordinators at airlines respond to these flow 
control actions by rescheduling and canceling 
flights, thus changing flow patterns. Schedules and 
route preferences from airlines and other users of 
the system are factored in the development of the 
TFM strategy through the collaborative decision-
making process [8].  
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Traffic flow management relies on a 
distributed set of decision makers, each having 
somewhat disparate goals and information, to 
control a system characterized by high levels of 
uncertainty using deterministic procedures. The 
Command Center is interested in overall flow, the 
center is interested in the local flow, and the 
airline operations center is interested in schedule 
adherence. Each party’s decisions are complicated 
by the inherent uncertainty of the information used 
to forecast aircraft trajectories and the inability to 
model the differing objectives and reactions of the 
other decision makers in a dynamic situation. For 
example, the traffic forecast does not account for 
weather uncertainties, departure uncertainties, and 

potential airline responses [9].   
Severe weather has been identified as the 

source of 70% of the traffic delays in the United 
States. Based on FAA operational data, Table 1 
shows the performance of the system on four 
Thursdays in July 2007. The number of flights on 
all the days is around 24,000. However, the delay 
increases from 341,431 minutes on a normal day 
(July 5) to 939,956 minutes on a severe weather 
day (July 19). Fig. 3 shows the locations of 
aircraft on a traffic display with aircraft on time 
shown in gray, aircraft delayed between 15 min 
and 2 h in blue, and aircraft delayed by more than 
2 h in red.  

 

Fig.  2. Distributed control structure in traffic flow management. 

 

Fig.  1. Centers in the continental U.S. airspace with sectors shown for Oakland Center. 
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The complexity of the TFM problem and the 
duration of the planning interval lead to a natural 
decomposition of the problem into national TFM 
decisions performed at the Command Center 
providing guidance to centers or groups of centers 
(regions) and regional TFM decisions performed 
in the regions. Regional TFM plans are local, 
more detailed, for shorter durations, and 
performed using more accurate traffic and weather 
information. 

A. National Traffic Flow Management 

The goal of national traffic flow management 
is to accommodate user-preferred gate-to-gate 
trajectory preferences by managing and allocating 
NAS resources in situations where demand 
approaches or exceeds supply. The demand and 
supply situation is made worse during severe 
weather conditions that may reduce both airspace 
and airport capacity. The tools available to 
manage traffic in the presence of excess demand 
are Airspace Flow Program, ground stop (GS), 
ground delay programs (GDPs), National 
Playbook, rerouting, and MIT. Airspace Flow 
Program identifies flights scheduled to travel 
through capacity limited regions of airspace, such 
as a region affected by severe weather. The 
affected flights are delayed at airports, or the 
airspace users are provided with the option to 
route around the constrained regions of airspace. 
While Airspace Flow Program is used to manage 
traffic flows due to en route constraints, GDPs and 

GSs are used for constraints impacting an airport. 
Ground stops hold all flights at their departure 
points that are destined to an affected destination 
airport for the duration of the ground stop 
initiative. Like the ground stop, the Ground Delay 
Program controls the flow of traffic to an airport 
where the forecasted demand is expected to 
exceed the airport’s predicted acceptance rate. A 
considerable body of research exists for the 
optimal planning of ground delay programs under 
both deterministic and stochastic airport capacity 
constraints, and a review of this research is 
presented in Section V.  

In addition to imposing departure controls on 
flights for regulating the flow of traffic into 
capacity constrained regions of the NAS, routing 
around these system constraints is a 
complementary control strategy. Under current 
operations, the FAA relies on the National 
Playbook [7]. It is a compendium of standardized 
alternative routes intended to avoid specific 
regions of airspace that are commonly affected by 
severe weather during certain times of the year, 
based on historically validated data. Playbook also 
contains alternative routes for circumventing 
closed airway segments, nonoperational 
navigational aids, and airports that are impacted 
by weather or runway closures.  

Table 1 NAS Performance on Normal and Severe 
Weather Days 

Date Flight 
Count 

Delayed 
Flights 

Total 
Delay 
(min) 

07/05/07 23,051 6,094 341,431 

07/12/07 24,557 7,129 382,876 

07/19/07 24,576 12,114 939,956 

07/26/07 24,573 9,606 595,779 

 

Fig.  3. Traffic display with on-time flights in gray, 
aircraft delayed between 15 min and 2 h in blue, and 
aircraft delayed more than 2 h in red. 
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Fig. 4 shows a planning template, known as 
“West Watertown,” provided in the playbook for 
rerouting eastbound traffic through the 
Minneapolis Center when a large portion of 
airspace in the Midwest is affected by weather. 
The large rectangular region in the southern 
portion of the Minneapolis Center (ZMA) 
represents a predicted severe weather region. The 
routes represented with a solid line in this figure 
represent alternative routes for aircraft originating 
on the West Coast and traveling to select East 
Coast destinations, such as Boston (BOS), La 
Guardia (LGA), and Dulles (IAD). Observe from 
Fig. 4 that the new route avoids the severe weather 
region entirely.  

Visual examination of the West Watertown 
routes in Fig. 4 shows that the routes from Helena 
(HLN), Sacramento (SAC), and Bryce Canyon 
(BCE) merge into a single route at Aberdeen 
(ABR). By redirecting and merging the usual 
flows of traffic in a region to avoid severe 
weather, the playbook-based rerouting process 
often causes congestion in those regions through 
which traffic is diverted. This hypothesis was 
found to be true for the traffic through regions, 
called Sectors 16 and 17 (shown in blue in Fig. 5), 
of Minneapolis Center (shown in black in Fig. 5), 
which was affected by the West Watertown 

Playbook routes. In the current air traffic 
management system, traffic flow is reduced by 
routinely increasing the separation between 
aircraft, using MIT restrictions, for mitigating this 
sort of congestion. Application of these 
restrictions forms the second step of the technique. 
The example in Section II-B describes a traffic 
scenario to illustrate the effects of using the West 
Watertown route along with MIT restrictions to 
control the traffic volume to within acceptable 
limits.  

B. Regional Traffic Flow Management 

Regional traffic flow management, which 
operates on a forecasted time horizon of roughly 
20 min to 2 h, provides a tactical control loop to 
adjust the control strategies generated by national 
flow management based on improved aircraft 
demand, airspace capacity, and weather intent 
information. At this time horizon, the two primary 
flow control strategies are MIT restrictions and 
local reroutes. MIT imposes a specified interval, 
expressed in nautical miles, between aircraft in a 
common stream; however, it tends to overcontrol 
flights because it is applied to an entire stream of 
aircraft and lacks the precision needed for minor 
adjustments. Local rerouting, however, provides 
the needed flexibility to control a few aircraft to 
circumvent the congested areas because it builds 
on the previous solution and obviates the need for 

 

Fig.  5. Air traffic over Minneapolis Center highlighted 
in black, with congested sectors 16 and 17 highlighted 
in blue. 

 

Fig.  4. Graphical representation of the West 
Watertown National Playbook route with a conceptual 
region of severe weather depicted by the shaded 
polygon. 
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a more severe MIT restriction. An example of a 
local reroute generated using the algorithm 
described in [10] is shown in Fig. 6. A portion of 
the nominal route for AAL197, flying from 

Boston to San Francisco, is shown as a dashed 
line. The rerouted path suggested by the algorithm 
to avoid Sector 16 of Minneapolis Center is shown 
via a solid line.  

Fig. 7 illustrates a potential integrated 
national and regional flow management solution 
for the hypothetical weather scenario that is 
represented by the red polygon in Fig. 4 [10]. 
Strategically rerouting flights around this 
constraint using the aforementioned West 
Watertown National Playbook route leads to an 
imbalance in the number of flights forecasted to 
travel through Sectors 16 and 17 in Minneapolis 
Center (blue highlighted polygons in Fig. 5) and 
the capacity available in these sectors. As 
illustrated by Fig. 7, two potential regional-level 
strategies for mitigating this imbalance are 1) 
imposing a MIT restriction on the rerouted traffic 
stream and then tactically rerouting flights within 
this stream and 2) locally rerouting the traffic 
without first imposing the MIT restriction. As 
illustrated by the sector capacity forecasts on the 

 

Fig.  7. Integrated impact of national and regional level flow control strategies on Minneapolis Sectors in 16 and 
17 over a 1-h planning horizon. 

 

Fig.  6. Nominal route (dashed blue) and local reroute  
(magenta) around a capacity constraint (red polygon) 

in Minneapolis Center. 
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right-hand side of Fig. 7, locally rerouting flights 
in Minneapolis without first spacing the flights 
with a MIT restriction results in the capacity-
demand imbalance’s shifting from Sector 16 to 
Sector 17.  

C. Issues for Current TFM 

Traffic management initiatives such as 
playbook routes, ground stops, ground delays, and 
MIT restrictions are based on attempts at solving 
particular problems. For example, Playbook routes 
are used for circumventing severe weather, ground 
stops and ground delays are used for controlling 
demand at the airports, and MITs are employed 
for controlling workload in the sectors. The 
various TFM actions are imposed independently 
based on experience, and the interaction between 
different actions may not always be accounted for 
while making the decisions. The overall capacity 
of the NAS may be improved by developing 
methods to integrate and optimize the various 
traffic management initiatives such as playbook 
routes, GS, GDP, and MIT to result in a single 
cohesive plan that improves traffic throughput, 
reduces delay, reduces congestion, and provides 
flexibility to the aircraft operators.  

A major problem with the current system is 
the insufficient sharing of information between 
decision-makers [11]. Information about schedule 
changes and cancellations is not available in a 
timely manner to the decision support tools. 
Airlines are not fully aware of the traffic 
conditions and the status of the NAS in making 
their routing decisions. Another source of 
uncertainty is that most of the trajectory 
predictions in the crucial climb phase are based on 
nominal weights of the aircraft and climb 
procedures [9]. The FAA and the aviation industry 
have worked hard in recent years to improve the 
collaboration between users and the service 
provider in decision-making. Collaborative 
decision-making (CDM) is limited to strategic 
planning, and the users’ participation in planning 
reduces as the planning interval becomes smaller 
[8]. 

D. Challenges for Future TFM 

A major challenge in the design of future 
TFM systems is to design an adaptive system that 
can handle both variations in the magnitude and 
distribution of the traffic over the next several 
decades. A system that can handle two to three 
times current traffic provides a starting point. The 
new system will be faced with new types of 
vehicles like very light jets and unmanned air 
vehicles, and may have to accommodate increased 
commercial space launch vehicles. The traffic 
demand may become more variable in the future. 
The future system should have increased 
collaboration between the users and the service 
providers all the way to tactical time frames. 
Another challenge will be to make good decisions 
in the presence of uncertainty in the prediction of 
weather. The effectiveness of probabilistic 
decision-making should be factored into future 
TFM. All this can only be achieved through 
increased levels of automation. The future TFM 
should gracefully degrade under off-nominal 
conditions. All future designs must address 
transition from the current system to the ideal 
transformed system through a series of 
intermediate transitions. 

E. Scope of this Paper 

The development of a future TFM system 
requires advances in the disciplines of operations 
research, guidance and control, human factors, 
weather prediction, and software engineering. 
Some of the research may involve the 
development of new algorithms, while others may 
focus on the benefits of a certain approach and 
how easily it can be implemented in the current 
and future systems based on extensive simulation 
and field tests. In order to ensure that increased 
levels of traffic move smoothly and efficiently in 
the presence of uncertainties, innovative modeling 
and design methods are needed in TFM. Fig. 8 
shows a candidate architecture for integrating the 
modeling, simulation, and optimization modules 
to improve decision-making in the future systems. 
New techniques to minimize total system delay (or 
other system performance functions) subject to 
airspace and airport constraints while 
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accommodating three times traffic in the presence 
of uncertainty are needed. To keep this paper to a 
reasonable size, topics were selected both for their 
importance and the expertise of the authors. This 
paper reviews the research and state of the art in 
the following three areas that are highlighted blue 
in this block diagram: TFM models, delay models, 
and optimization. For information on recent 
weather-related air traffic management research, 
the reader is referred to [12]–[15]. Similarly, 
recent developments in the area of collaborative 
traffic flow management are documented in [16] 
and [17]. The next sections will describe the 
modeling and optimization techniques useful in 
realizing the challenges facing future TFM 
systems while improving the performance of 
current systems. 

III. TRAFFIC FLOW MODELS 

Aggregate and reduced order models simplify the 
analysis and design of many complex systems. For 
example, in flight mechanics, design calculations 
are often made using three degree-of-freedom 
point mass models that ignore the turn dynamics 
of the system. Singular perturbation theory is 
devoted to model order reduction that exploits the 
inherent time-scales in many systems. Today, air 
traffic flow prediction is done by propagating the 
trajectories of the proposed flights forward in time 
and using them to count the number of aircraft in a 

region of the airspace. Examples of systems that 
use this physics-based modeling approach for 
demand forecasting include the Center TRACON 
Automation System [18], the Future ATM 
Concepts Evaluation Tool (FACET) [19], and the 
Collaborative Routing Coordination Tool [20]. 
The accuracy of these predictions is affected by 
departure and weather uncertainties [9], [21]. 
These trajectory-based models predict the 
behavior of the NAS adequately for short 
durations of up to 20 min. With the short 
prediction accuracy, it is difficult, if not 
impossible, to make sound strategic decisions on 
air traffic management.  

Strategic TFM is a hierarchical system 
consisting of a large number of states and operates 
over time scales extending from a few hours to 24 
h. A strategic TFM decision may involve rerouting 
all aircraft originating from the West Coast 
heading to airports on the East Coast to account 
for an anticipated stormy situation near Chicago 
over the next several hours. Since strategic TFM 
requires control of flows of aircraft rather than 
individual aircraft, an aggregate model of traffic 
flow that does not use trajectories of individual 
aircraft is desirable. Strategic TFM can be 
substantially improved by the development of 
simpler, but more accurate, models that allow the 
exploitation of different analysis and synthesis 
techniques from systems theory. Motivated by this 

 

Fig.  8. Potential integrated TFM architecture, with areas covered in this paper highlighted in blue. 
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objective, considerable research has been focused 
to compute an aggregate model of air traffic flows 
from historical data. 

The development of aggregate flow models 
for TFM has been the subject of considerable 
interest since the first model [22] appeared in the 
literature. This initial model presented a Eulerian 
approach to modeling air traffic that spatially 
aggregated the flows in a network of 
interconnected, one-dimensional control volumes, 
and leveraged prior research from the area of 
highway traffic modeling [23]–[25]. The authors 
subsequently extended their one-dimensional 
model by modeling the airspace in terms of two-
dimensional latitude-longitude surface elements 
[26]. To account for the inherent flight plan intent 
uncertainties in the air traffic system, [27] 
introduced an aggregate stochastic dynamic model 
that assumed departures from each airport in the 
NAS were governed by an independent Poisson 
process. In the actual air traffic management 
system, the departure rates from airports can vary 
significantly throughout the day as banks of 
aircraft arrive and depart from major U.S. hub 
airports, thus modeling these rates through an 
independent Poisson processes was viewed as a 
limitation of this early stochastic dynamic model. 
To address this issue, [28] developed a linear 
dynamic systems model that derived actual time-
varying departure rates from historical air traffic 
data that were subsequently augmented by 
modeling departure uncertainty about these 
nominal, observed rates.   

Subsequent research on aggregate traffic flow 
models has led to the development of a continuous 
model [29] based on a modified Lighthill–
Whitham–Richards [30] partial-differential 
equation, as opposed to the earlier discrete 
models. Finally, to overcome the network splits 
inherent in the previous models, a 
multicommodity large-capacity cell transmission 
model was recently proposed [32]. A brief 
description of the models proposed in [26], [28], 
and [29] follows. 

A. Linear Dynamic System Model (LDSM) 

The LDSM uses flow relationships between 
adjacent centers [27]. The model is built by 
counting the number of aircraft entering a center 
from an adjacent center, the number of aircraft 
leaving a center for a neighboring center, and the 
numbers of aircraft landing and taking off within a 
center. Input to this model consists of the number 
of departures. Results presented in [27], assuming 
that departures follow a Poisson distribution, show 
that the resulting numbers of aircraft in the centers 
also fit a Poisson distribution. The main limitation 
of the results is that modeling departures from 
Poisson distributions (albeit a different one for 
each major hub airport) ignores the fact that 
departure counts vary significantly during the day 
as banks of aircraft arrive and depart major hub 
airports. Aircraft counts in the centers, forecast by 
LDSM, can be improved significantly by 
accounting for the nominal departure rates as a 
function of time and augmenting them by 
modeling departure uncertainty about these 
nominal rates. 

The basic time-invariant LDSM was extended 
to a time-varying system in [28]. Instead of a 
single state transition matrix, several state 
transition matrices (one for each hour) were used 
to cover the entire prediction period. State 
transition matrices were computed using historical 
air traffic data. The resulting model was then 
driven by average departure rates, also derived 
from historical air traffic data, to predict aircraft 
counts in the 23 airspace regions. These 23 
regions consisted of 20 centers in the continental 
United States, one each covering Hawaii and 
Alaska, and one for the international airspace. 
Uncertainty bounds around these nominal 
predictions were then obtained using the standard 
state covariance propagation model driven by the 
covariance of departure counts. Day-to-day 
variations about the average departure counts are 
assumed to be zero-mean Gaussian random 
variables. Results are presented for another day of 
traffic data (other than the four days used in 
LDSM) to show that these counts lie within the 
confines of the mean aircraft counts predicted by 
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the LDSM and uncertainty bounds generated by 
the covariance propagation technique [28]. 

The number of arrivals (landings) and the 
number of aircraft leaving a center in an interval 
of time, T , are assumed to be proportional to the 
number of aircraft in the center at the beginning of 
the interval. Following the notation in Fig. 9 and 
using the principle of conservation of flow 
(analogous to the principle of mass balance in a 
control volume) in a center, the number of aircraft 
in the center at the next instant of time 1+k  can 

be related to the number of aircraft in the center at 
the current instant of time k  via the difference in 

number of aircraft that came into the center and 
the number of aircraft that left the center as 
follows: 

ix (k +1) = xi(k) ij xi
j=1

N

(k) + ji

j=1
j i

N

x j (k) + di(k)

 (1) 

The fractions ij  and ji  are obtained as 

transition probabilities in [27], [28].  The 
departures within the center i  are denoted by 

)(kd
i

. For modeling, these departures can be split 

into two components—a deterministic one and a 
stochastic one. The deterministic portion of the 
departures )(kui  can be computed from filed 

flight plans and from historical departure data. For 
example, )(kui  can be set to the average departure 

count derived from historical data.  
The stochastic component of the departures, 

)(kwi , can be modeled by assuming a suitable 

distribution such as a Gaussian or a Poisson 
distribution. In such a model, )(kwi , which can 

also be obtained from historical data, represents 
the expected variation around the deterministic 
component.  

The discrete system in (1) can be rewritten in 
the standard state space notation as 

x(k +1) = A(k)x(k) + B(k)u(k) +C(k)w(k) (2) 

where,  

k time instant defined by 
k T , with T being the 
sampling interval. In 
[28], it has been shown 
that a 10-min sampling 
interval accurately 
approximates center 
aircraft count. 

x(k)= 1x (k),... Nx (k)[ ] state vector with the 
number of aircraft in 
the centers at time k  as 
its elements. 

u k( )= [ ])k(u),...k(u N1  control vector with the 
number of aircraft 
departing (taking off) 
from the centers as its 
elements. 

w k( )= 1w (k),... Nw (k)[ ] vector for modeling 
departure uncertainties. 

A k( )  state transition matrix 
that contains the 
information of how 
flights transition from 
one center to the other 
center. 

 
The elements of the state transition matrix A  

are given by 

  

aij = ij;

i j; i =1, ,N; j =1, ,N
 (3)  

Fig.  9. Components of aircraft flow contributing to the 

traffic count in a given center. 
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where 23=N  is the number of centers. The off-

diagonal terms )(kaij  represent the fraction of 

aircraft transitioning from center i to center j at 

time k . This quantity is calculated from historical 
data and slowly varies over time [28].  

The diagonal terms can be calculated as  

iia = 1 ij
j=1

N

 (4) 

These terms represent the fraction of the aircraft 

that remained in center i  during the th
k  time step.  

Numerical results in [28] provide error 
bounds for the number of aircraft in the center and 
show that a linear dynamic system with a few 
transition matrices and Gaussian departure 
distribution adequately represents traffic behavior 
at the Center level. 

B. Eulerian Models 

The development of a Eulerian [23]–[25] 
approach to model air traffic was discussed in 
recent research efforts [22], [26]. A computer-
aided methodology for deriving Eulerian models 
of the airspace, and employing it for air traffic 
flow control, is described in [26]. The approach 
uses FACET software [19] as its foundation. 

The Eulerian approach models the airspace in 
terms of line elements approximating airways, 
together with merge and diverge nodes. Since this 
modeling technique spatially aggregates the air 
traffic, the order of the airspace model depends 
only on the number of line elements used to 
represent the airways and not on the number of 
aircraft operating in the airspace. Eulerian models 
are in the form of linear, time-varying difference 
equations.  

The one-dimensional modeling methodology 
is an intuitive approach for deriving models of 
traffic flow networks formed by jet routes and 
Victor airways. However, not all aircraft in the 
airspace strictly follow the jet routes or Victor 
airways. This introduces the need for a more 
flexible modeling framework. This framework, 
first advanced in [22], discretizes the airspace into 
surface elements, within which the traffic flow is 

aggregated into eight different directions. This 
modeling provides adequate fidelity in en route 
airspace where the traffic flow is largely two-
dimensional. The traffic at all flight levels in Class 
A airspace (at or above 18,000 ft) is classified as 
belonging to any one of these eight directions, 
with inflows and outflows from airports and other 
external sources. Each surface element is 
connected to its eight neighbors, with the 
connection strengths being determined by the 
actual traffic flow patterns. 

C. Partial Differential Equation Model 

In [29], a fully continuous Eulerian model 
that relies on a modified version of the Lighthill-
Whitham-Richards [30] partial differential 
equation is proposed.  Development of this model 
begins by subdividing the airspace into a series of 
N links of length Li , described by a coordinate 

xi [0,Li], where the links are indexed by 

i {1,...,N} .  If the density of aircraft on link i at 

time t is denoted by i(xi,t) and the main velocity 

profile along link i is vi(xi) the governing partial 

differential equation system is given by [30] 

i(xi,t)

t
+

xi
( i(xi,t)vi(xi)) = 0 i {1,...,N}(5) 

i(xi,0) = i
°(xi) i {1,...,N}  (6) 

i(0,t)vi(0,t) = j (L j ,t)v j (L j ,t) + qi
in (t) i M

j U (i)

 (7) 

il
(0,t)vil (0,t) = i(t) i(Li,t)vi(Li,t) i D  (8) 

ir
(0,t)vir (0,t) = (1 i(t)) i(Li,t)vi(Li,t) i D

 (9) 

i(0,t)vi(0, t) = qi
in (t) i S  (10) 

where 
N number of links; 
S set of source links; 
M set of merge links; 
D set of fork links; 
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U(i)  set of links merging into link i; 
i
l
,i
r

 indexes of the links of a fork; 

  i
(xi,t)  initial aircraft density on link i; 

qi
in (t) inflow at xi = 0  for link i; 

i(t)  portion of i  that flows into link il . 
 

This model was validated by comparing the 
aircraft count predictions from the model with the 
actual aircraft counts that were obtained from 
historical Enhanced Traffic Management System 
(ETMS) data. The model was subsequently 
included in an optimization problem that was 
designed to maximize the throughput at a 
destination airport subject to en route sector 
capacity constraints. 

D. Status of Flow Models 

The aggregate and reduced order flow models 
described earlier represent the traffic behavior to a 
high degree of accuracy and can be tailored to the 
time-scales and regions of interest. A comparison 
of the characteristics of the different flow models 
can be found in [31] and [32]. The stability and 
response characteristics of the aggregate flow 
models are presented in [33]. The aggregation in 
the flow models generally results in the loss of 
information about the route structure of individual 
aircraft. This additional information can be 
modeled at the expense of the size of the 
aggregate model. The flow models can be used to 
design control policies to achieve the desired 
closed-loop behavior. However, additional 
research is needed to translate the control policies 
into actual TFM flight planning decisions 
involving aircraft departure times and routes. 
Currently, there is limited experience in the 
application of aggregate and reduced order flow 
models for generating TFM decisions. TFM 
decisions based on aircraft level models and 
optimizing system level cost functions are 
described in Section V. 

IV. DELAY MODELS 

In order to evaluate the impact of TFM procedures 
on overall NAS performance, it is necessary to 

characterize and model various performance 
metrics. The performance of the NAS can be 
described in several different ways. A number of 
metrics, such as delay, safety, predictability, 
access, flexibility, and efficiency, have been 
proposed to describe the performance of the 
system [34], and details about the metrics are 
available in [35] and [36]. A correct set of metrics, 
meaningful and measurable, needs to be created 
from these desirable performance characteristics 
in order to understand the complex relation among 
traffic, weather, and delay. Since no physical 
model is available for assessing the performance 
of the TFM system, most delay models leverage 
the vast quantities of data that are available for the 
system.   

Delay has been used extensively to assess the 
performance of NAS. An aircraft may be delayed 
at the departure airport due to problems associated 
with the aircraft or excessive traffic or weather 
conditions. These types of delays could also occur 
during en route and arrival phases of the aircraft. 
The FAA maintains two databases, Air Traffic 
Operations Network (OPSNET) and Aviation 
System Performance Metrics (ASPM).1 The 
databases contain information about different 
types of delay, location and causes of delay, and 
flight performance relative to schedule. In addition 
to the delays in the databases, delay can be 
computed as excess over an ideal time of travel 
between the origin and destination [37]. The 
OPSNET delays are caused by the application of 
TFM initiatives in response to weather conditions 
and excessive traffic volume.  

TFM initiatives such as ground stops, ground 
delay programs, rerouting, airborne holding, and 
miles-in-trail restrictions are actions that are 
needed to control the air traffic demand to mitigate 
the demand-capacity imbalance due to the 
reduction in capacity. Consequently, TFM 
initiatives result in NAS delays. Of all the causes, 
weather has been identified as the most important 
causal factor for NAS delays. Therefore, to guide 
flow control decisions during the day of 
operations, and for postoperations analysis, it is 

                                                
1 Both found at http://www.apo.data.faa.gov. 
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useful to create a baseline for NAS performance 
and establish a model that characterizes the 
relation between weather and NAS delays. In 
postoperations analysis the model can be used to 
check if the recorded delay was within the range 
of delays for similar weather and, if the delay is 
out of bounds, to examine the operations carefully 
for other causes. Similarly, given the expected 
weather, the model can be used to predict the 
expected aggregate delay. 

Recent delay estimation models that have 
appeared in the literature include a sizeable 
number of models based on the Weather Impacted 
Traffic Index (WITI) [38]–[42]; passenger delay 
estimation models [43]; and models that explore 
the propagation of delays throughout the NAS 
[44]–[47]. A brief description of recent advances 
in each of these areas follows. 

A. Weather Impacted Traffic Index Models 

Several efforts have been made to understand 
the connection between weather and delay at both 
the local and the national level. The concept of 
WITI, which is the number of aircraft affected by 
convective weather at a given instant of time, was 
introduced in [38] and has subsequently been the 
basis for the development of several delay 
estimation models [39]–[42]. Closely paralleling 
these WITI-based models has been the 
development of grid-based models that borrow 
from such fields as computer vision and image 
processing [48]. 

WITI is an indicator of the number of aircraft 
affected by weather. The computation of WITI 
consists of 1) assigning a value of one to every 

grid cell jiW
,

 of the weather grid W , where severe 

weather is indicated and zero elsewhere; 2) 
counting the number of aircraft in every grid cell 

jiT
,

; and 3) computing the WITI at an instant of 

time k (typically at 1-min intervals) as follows: 

WITI(k) = Ti, j(k)Wi, j
i=1

n

j=1

m

(k) (11) 

where n is the number of rows and m is the 
number of columns in the weather grid.  

Fig. 10 shows the locations where severe 
weather is indicated at 3:00 pm Eastern Standard 
Time (EST) on July 16, 2005. The weather grid 
consists of 1837 rows and 3661 columns, which 
are approximately one nautical mile wide. Fig. 11 
shows the corresponding locations of aircraft in 
the weather grid based on historical demand. 
Finally, element-by-element multiplication of the 
two grids in Figs. 10 and 11 and summation in 
step 3 [see (11)] results in a WITI at 3:00 pm on 

 

Fig.  10. Regions of severe weather at 3:00 pm EST on 
July 16, 2005. 

 

Fig.  11. Regions of expected air traffic at 3:00 pm EST on 
July 16, 2005. 
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July 16, 2005. Fig. 12 shows the WITI values for 
that day as a function of time. Observe from (11) 
that the unit of WITI is number of aircraft, since 

jiW ,  takes on values of one or zero. Thus, WITI is 

a weather weighted traffic count. Once WITI time 
histories, such as in Fig. 12, are computed, some 
features or measures of the them can be 
mathematically related to OPSNET delays, for 
example, using a least squares procedure. WITI 
features can then be used for estimating the delay 
for the days of interest based upon the established 
functional relation.  

In [38], the sum of WITI values, which is 
equivalent to the mean (a feature of WITI time 
history), was related to average arrival delay. 
Including additional features can enrich the 
description of WITI. Given the WITI time history 
as in Fig. 12, [39] describes methods to compute 
statistical features, frequency-domain features, and 
time-domain features. In addition, two surface 
weather features, which are number of airports 
with low visibility and number of airports with 
high wind speed, are included in the estimation of 
NAS delay.  

A functional relation between the en route 
WITI features, surface weather features, and the 
OPSNET delay can be established as follows. Let 

)(if j  be the thj  feature for the th
i day, j

w be the 

thj  coefficient, and )(id  be the OPSNET delay on 

the th
i day.  With these definitions, the functional 

relation is established as follows: 

d

w

r

F

r

r

r

sd

d

d

w

w

w
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fff

fff
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 (12) 

where r  is the number of features used and s  is 

the number of days. Note that s >> r. The 
coefficient vector w can now be determined using 
the least squares procedure as 

dFFFw
TT 1)(=  (13) 

with the F  matrix and the d  vector defined in 

(12). Then, the estimated delay on day q, )(ˆ qd  is 

given by  

=

=

r

i

ii qfwqd

1

)()(ˆ  (14) 

where iw is from (13) and )(qfi  is th
i feature on day 

q. 
Reference [40] suggested that the behavior of 

the NAS is highly nonlinear, and days with higher 
delays may behave differently from those with 
lower delays. Severe weather reduces the capacity 
of the NAS by reducing the available resources at 
the airport and in the airspace. In this respect, the 
NAS can be viewed as a queuing network, and as 
the demand for resources as a fraction of the NAS 
capacity (denoted as ) increases, the NAS delay 

(denoted as d) exhibits the following relation: 

 

Fig.  12. WITI values as a function of time for July 16, 
2005. 
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1
  d , (15) 

where 0 < <1. It can be deduced from (15) that 

for low demand, the delay d is linearly 
proportional to , and for moderate demand, d is 

proportional to 2 . As demand reaches 

operational capacity, i.e., as  approaches one, d 

increases exponentially. To better model the 
nonlinear nature of delay with demand, the linear 
model is extended in the next section.  

Following [40], a piecewise linear model 
approximates the NAS behavior. Days are 
separated into three groups based on the 
magnitude of the observed delays during 2004–
2006. The first group consists of days with low 
delays between 0 to 50,000 minutes; the second 
group of days is with medium delays between 
50,000 to 100,000 minutes; and the third group is 
days with high delays of 100,000 minutes and 
above. The choice of these separation intervals, 
referred to as “knots,” is discussed in [39]. In each 
group, the NAS delay estimation model is 
developed by following (12)–(14). Recall in (12) 
the feature matrix F, as well as the OPSNET delay 
d, can be rearranged and partitioned into three 
submatrices/vectors corresponding to the three 
groups as follows: 

F = Diagonal[F1 F2 F3 ] and d =

d1
d2
d3

 

 

 
 
 

 

 

 
 
 

 (16) 

where the subscripts 1, 2, and 3 correspond to 
each of the three groups of NAS delay days, 
respectively. Therefore, the coefficient vector w 
can also be partitioned into  

=

3

2

1

w

w

w

w  (17) 

where 
i

w  can be determined from the least squares 

procedure for 3, 2, ,1=i and is given by 

i

T

ii

T

ii
dFFFw

1)(= , 3 2, ,1=i . (18) 

Thus, the estimated delay for each delay group is 
given by 

iii
wFd =ˆ , 3 2, ,1=i . (19) 

A detailed analysis of the three-piece linear 
models was performed in [40], and it was shown 
that the three-piece linear models predict the NAS 
delays better than a single linear model. 

 

Fig.  13. Block diagram showing the WITI calculation, delay classification, and three-piece linear delay estimation 
model. 
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Fig. 13 is a block diagram showing the 
computation of the national WITI and center 
WITIs, the classification scheme, and the three-
piece linear models [41]. It illustrates the 
integrated approach, which combines the delay 
classification with piecewise linear modeling to 
produce an improved delay estimation model.  

B. Passenger Delay Estimation Models 

Flight delays measure the impact of TFM 
decisions on aircraft. The delays do not capture 
airline actions such as cancellations and 
diversions. They are not a true measure of the 
impact of delays to the end user, the passenger and 
business, dependent on the aviation system for 
transport. Some small delays in the system, 
leading to a situation where airlines are unable to 
maintain connectivity between different flights, 
may lead to large passenger delays. The passenger 
delay model [43] shows that flight delays alone 
can severely underestimate the delays faced by 
passengers with missed connections. 

Inputs to the passenger delay model, which is 
also called the passenger delay calculator, include 
1) the planned flight schedule, 2) the number of 
booked passengers and the fraction of passengers 
who book seats and show up at their flight legs, 3) 
the actual flight leg departure and arrival delays, 
and 4) the canceled flight legs [43]. 

Using these inputs, the passenger delay 
calculator 1) determines the set of disrupted 
itineraries and their respective passenger types; 2) 
places disrupted passengers in a recovery queue; 
3) reschedules each passenger in the recovery 
queue on a recovery itinerary with the original 
airline if appropriate seating is available; 4) 
reschedules passengers not accommodated by the 
original airline with a recovery itinerary on an 
alternative airline; and 5) calculates the passenger 
delay statistics [43]. 

Some of the key findings from this study are 
that 1) “flight leg delays are not accurate 
surrogates of passenger delays for hub-and-spoke 
airlines”; 2) “connecting passengers are almost 
three times more likely to be disrupted than local 
passengers”; and 3) flight cancellation rates and 
the percentage of flights delayed by over 45 min 

are more accurate indicators of passenger 
disruptions [43]. 

C. Delay Propagation Models 

Because the NAS is a complex and 
interconnected system, delays in one region 
routinely propagate throughout the domestic and 
international schedules of air carriers. Several 
research organizations have recently undertaken 
efforts to understand how delays propagate 
through this complex system [44]–[47]. For 
example, in [44] and [45], the use of Bayesian 
networks is proposed to investigate these effects, 
while in [46], simple statistical models are 
developed to gain insight into how delays 
propagate throughout the NAS. 

Significant insights provided from these 
models include the observation that 
overscheduling at busy airports, such as New 
York’s LaGuardia Airport, creates situations in 
which there is no slack period during peak traffic 
hours to recover from early delays. This leads to a 
situation in which the only period during which 
the airport can recover from early delays is late at 
night after the scheduled demand reduces [46]. 
Additionally, these models indicate that the 
presence of one major carrier at an airport tends to 
make the airport operations more predictable [46]. 

V. OPTIMIZATION 

In this section, the TFM optimization problem is 
formulated as a general two-point boundary value 
problem (TPBVP), and subsequently dynamic 
programming approaches for solving this problem 
are discussed. Next, the state of the art in 
optimization approaches for scheduling flights to 
capacity constrained airports and en route regions 
of airspace is discussed, and an example in which 
flights are scheduled to Chicago O’Hare under 
both current and future traffic demand scenarios is 
presented. This section ends with a discussion of 
optimization approaches that account for 
uncertainties in forecasted air traffic demand and 
capacity. 
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A. Two-point Boundary Value Problem 

The TFM optimization problem can be 
formulated as a standard TPBVP with the systems 
dynamics represented by the equation 

x(k +1) = f [x(k),u(k),w(k)] (20) 

where x(k) represents the state of the system at 
time k, u(k) the control, and w(k) the disturbance 
in the system. Either the Lagrangian or the 
Eulerian models can represent the state of the 
system. If the state is represented by the position 
and velocity of each aircraft in the TFM problem, 
a 4-h planning period in the United States may 
involve about 15,000 aircraft, and the number of 
states in the system is about 90,000. The control 
variable u(k) is specified in terms of departure 
times of the aircraft from origin airport and the 
route followed by each aircraft from origin to 
destination.  

The cost function can be specified in terms of 
the performance metrics described in Section IV. 
The number of stages N depends on the duration 
of the problem. Some commonly used metrics are 
total aggregate delay and deviations from 
schedule. 

J = E g[x(k),u(k),w(k)]
k= 0

N
 (21) 

The major constraints in the TFM problem come 
from two sources: a) constraints on the number of 
arrivals and departures at an airport and b) the 
number of aircraft in a region of the airspace 
based on safety considerations. The maximum 
number of aircraft in a region, referred to as 
airspace capacity, depends on the ability of 
controllers and the automation tools to keep 
aircraft separated from each other. The capacity of 
the airspace is affected under severe weather 
conditions, as described in Section IV. 

B. Dynamic Programming 

Dynamic Programming (DP) [49] provides an 
approach to the TPBVP described earlier 
involving optimization over a number of stages or 
time intervals. The decision at each stage has an 

immediate cost but also affects the decisions 
possible at future stages. The cost of going from 
stage k to k+1 is g[x(k), u(k), w(k)]. In selecting 
u(k), one needs to think of not only u(k), but also 
the desirability of state x(k+1) and the subsequent 
controls u(k+1),..u(N-1). The optimal cost-to-go 
I(x,k), satisfies Bellman’s equation 

I(x,k) = min
u(k ),...u(N )

E [g(x( j),u( j),w( j))]
j= k

N

 (22) 

=min
u(k )

E
w(k )
(g(x(k),u(k),w(k)

+I(x(k +1),k +1))).  
(23) 

At each k, it is optimal to use u(k), which 
minimizes equation (22). 

ˆ u (x,k) = argmin
u(k )

E
w(k )

[g(x(k),u(k),w(k))

+I(x(k +1),k +1)].
 (24) 

It is well known that DP for complex 
problems suffers from the “curse of 
dimensionality” and approximations to the cost 
function are needed to produce a suboptimal 
solution 

˜ u (x,k) = argmin
u(k )

E
w(k )

[g(x(k),u(k),w(k))

+ ˜ I (x(k +1),k +1)]  
(25) 

Most of the research in the application of dynamic 
programming looks for ways to approximate the 
cost-to-go function [50], [52]. This quick review 
of the DP methodology provides a background to 
look at the recent approaches used to solve 
different variations and approximations to the 
TFM optimization problem. 

C. Ground Holding Problem 

Optimizing traffic flow management 
decisions has enticed researchers since late 1980s 
[52]. Most of the optimization methods in the 
literature have addressed the complexity and 
computational issues in the TFM optimization 
problem by considering special cases. They are 
formulated as linear and/or integer programming 
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problems, where the decision variables that are 
optimized are typically the departure (or ground) 
delay, rerouting, and airborne holding of 
individual flights or groups of flights.  

Among the TFM problems, the ground 
holding problem (GHP) has been most thoroughly 
addressed. The GHP involves deciding on ground 
delay assignment to flights subject to the airport 
capacity constraints to minimize an objective 
function, which is typically the sum of ground and 
airborne delays weighted by their relative costs. 
Application of GHP lies in enhancing decision 
support systems for planning FAA-imposed 
GDPs.  

Within the domain of GHP there are two 
subproblems: 1) the single airport ground holding 
problem(SAGHP) and 2) the multiairport GHP 
(MAGHP). In the SAGHP, it is assumed that a 
single airport is constrained in the system due to 
arrival capacity-demand imbalance, while all other 
resources in the NAS are unconstrained. In the 
multiairport case, as the name suggests, arrival 
and departure capacities of multiple airports are 
considered simultaneously while deciding on-the-
ground delay assignment. The MAGHP, unlike the 
SAGHP, considers the network effect (or delay 
propagation) due to departure, and hence arrival 
delays. 

In a deterministic setting, where airport 
capacities during future time-periods are assumed 
to be known with perfect information, the SAGHP 
can be formulated as a minimum cost network 
flow problem [53], [54]. The objective function 
minimizes either the total ground delay or some 
cost function of ground delays of individual 
flights. Since the cost of airborne delay of a flight 
is assumed to be more expensive than ground 
delay, in a deterministic setting any necessary 
amount of delay is absorbed in the ground, and 
hence the airborne delay cost component is not 
required in the objective function. 

In the past, several researchers have focused 
on variants of the deterministic SAGHP. A set of 
banking constraints was added to the above 
formulation in [54]. Some major airlines 
commonly schedule banks of operations at their 

hub airports, meaning a group of flights whose 
arrival (or departure) times fall within a specified 
time window. Such temporal grouping of flights 
facilitates the transfer of passengers, baggage, and 
airline crews in a hub-and-spoke system. Banking 
constraints proposed by [54] allocate ground 
delays to flights while keeping those in a bank 
temporally grouped. 

In [55], an optimization model simultaneously 
assigned ground delays and optimally allocated an 
airport’s runway capacity towards arrival and 
departure operations. The work in [56] also 
addressed a similar problem and provided a 
dynamic programming algorithm to enhance the 
efficiency in achieving optimal solutions. 
Subsequently, the authors of [57] extended their 
previous formulation to consider arrival and 
departure fix capacities at an airport along with 
that of its runways. 

Typically, the FAA exempts certain flights, 
mostly based on the distance of their origin airport 
from the destination, from a GDP [58]. This 
mainly hedges against uncertainty in capacity 
forecasts for a couple of hours in advance. The 
motivation behind exempting long-haul flights is 
that if weather forecasts turn overly pessimistic 
and fair weather capacity eventuates, the delay of 
those flights will become unnecessary and 
unrecoverable. On one hand, this leads to 
increased efficiency in the case of imperfect 
forecasts; on the other hand, these flight 
exemptions cause systematic bias in slot allocation 
among airlines. In [59], a linear optimization 
model mitigated such an exemption bias in slot 
allocation. In essence, the objective function of 
their model minimizes the deviation between the 
assigned slot and the ideal slot of a flight. The 
ideal slot for a flight is determined by applying the 
ration-by-schedule (RBS) algorithm, which is 
based on the first-scheduled first-served principle, 
to all flights without any exemptions. 

One of the major applications of the 
collaborative decision-making (CDM) paradigm 
has been in planning and implementing GDPs. 
Under CDM, the FAA allocates slots to airlines, 
who can then perform intraairline cancellations 
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and slot substitutions to meet their operational 
goals such as on-time performance, speedy 
recovery from schedule disruption, etc. Typically, 
the FAA executes the RBS algorithm to allocate 
slots among airlines. Users have accepted RBS as 
an equitable allocation method. An extensive 
discussion on equity and fairness issues in slot 
allocation was provided in [60]. 

After a round of intraairline cancellations and 
substitutions, airlines notify the FAA about any 
changes in their schedule. Thereafter, a 
compression algorithm, which is essentially an 
interairline slot exchange mechanism, is executed 
to utilize slots vacated by flight cancellations. In 
recent years, a more dynamic form of interairline 
slot exchange, known as the Slot Credit 
Substitution, has been implemented in practice. In 
this model, airlines can submit conditional flight 
cancellation requests in exchange for delay 
reduction of another flight [61]. Optimization 
models in [62] suggested a more generalized form 
of interairline slot exchange during a GDP. 

The deterministic MAGHP has received the 
attention of several researchers [63]–[65]. When 
large number of airports and flights are 
considered, this problem poses severe 
computational burden. A heuristic, based on a set 
of “priority” rules in assigning ground delays to 
flights, to solve the deterministic MAGHP was 
proposed in [66]. 

As in the SAGHP, there are several variants 
of the deterministic MAGHP. In [64], constraints 
were proposed that could capture the 
interdependence between arrival and departure 
capacities at airports. With this extension, it is 
possible to simultaneously determine the optimal 
ground holding strategy and the allocation of 
runway capacity between arrivals and departures. 
In all the above models for the MAGHP, a set of 
constraints, commonly known as flight 
connectivity constraints, is imposed between 
successive flights performed by one aircraft, i.e., 
single connections are accounted. An alternative 
formulation for the deterministic MAGHP that 
addresses the delay propagated by an aircraft onto 
several other flights, a situation that commonly 

arises at hub airports where the arrival and 
departure times of several flights are interlinked, 
was proposed in [67]. 

D. Optimization Models for the Generalized 

ATFM Problem 

Optimization models and algorithms that 
address en route capacity constraints treat the 
airspace system as a multiple origin-destination 
network on which traffic flow must be assigned. 
Deterministic optimization models addressing en 
route capacity constraints along with that of 
airports were formulated as a multicommodity 
network flow problem by [68], and more recently 
by [69]; the latter addresses routing as well as 
scheduling decisions. A deterministic model for 
deciding ground and airborne holding of 
individual flights under airport and airspace 
capacity constraints was formulated as a binary IP 
by [70]. More recently, [64] formulated a 0–1 IP 
to solve a similar problem. To date, their model 
performs best in terms of computation when 
applied to large-scale problems. Here we present 
the formulation in [64]. 

Let K  denote a set of airports, F  be the set 
of flights scheduled between those airports, and J  

denote the set of en route sectors. Let F  denote 
the set of pairs of flights that are continued, i.e., 

{( , ) :  is continued by }F f f f f= . Let the 

planning horizon be divided into T  time intervals 

of equal duration. For a given flight f , let fN  

denote the number of resources (i.e., sectors and 

airports), and ( , )P f i , 1 fi N , denote the th
i  

resource along flight f ’s path. Note that ( ,1)P f  

and ( , )fP f N  represent the departure and arrival 

airports, respectively. Depending on the trajectory, 
each flight is required to spend a minimum 

number of time units, fjl  in a sector j  that lies 

along its flight path. Let the capacity of resources 
during a time-interval t  be denoted as follows: 

( )
k

D t = departure capacity of airport k K , ( )
k

A t

= arrival capacity of k , and ( )jS t = sector capacity 

(i.e., number of aircraft allowed to be present in 
sector j J ). The flight-specific scheduled times 
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and delay costs are denoted as follows: fd , fa , 

and fs  are the scheduled departure, arrival, and 

turnaround times respectively, while g

fc  and a

fc  

denote the unit costs of delaying a flight in ground 
and in air. 

The binary decision variables, which are 
nondecreasing, are defined as follows: 

w ft
j

=
1 if flight f arrives at sector j by time t,

0 otherwise.

 
 
 

 

To reduce the size of the formulation, [64] 
proposed, for each flight, a feasible time-window 
when that flight can be present in a resource along 
its flight path. The feasible time-periods, for a 
flight f  to be present in sector j , are represented 

by a set j

fT , ( , ),1 fj P f i i N . Based on the 

above decision variables, the total ground and 
airborne delays of a flight are given by the 
following expressions: 

, 1, ( ,1)
( )k

f

k k

f ft f t ft T k P f
g t w w d

=
=  (26) 

, 1, ( , )
( )k

f f

k k

f ft f t f ft T k P f N
r t w w a g

=
=  (27) 

The objective function and the set of 
constraints are defined as follows: 

( )g a

f f f ff F
Min c g c r+

 (28) 

subject to: 

, 1: ( ,1)
( ) ( ) , {1,.., }k k

ft f t kf P f k
w w D t k K t T

=

 
(29) 

, 1: ( , )
( ) ( ) , {1,.., }

f

k k

ft f t kf P f N k
w w A t k K t T

=

 (30) 

, 1: ( , ) , ( , 1)
( ) ( ) , {1,.., }j j

ft f t jf P f i j P f i j
w w S t j J t T

= + =

 (31) 

,

, , ( , ),
0

( , 1),fj

j
j j f
f t l ft

f

f F t T j P f i
w w

j P f i i N+

=

= + <
 (32) 

,

( , ) , ,
0

( ,1) ( , )f

k
k k f
ft f t s

f

f f F t T
w w

k P f P f N= =
 (33) 

, 1

, ( , ),
0

1 ,
j j

jft f t
f f

f F j P f i
w w

i N t T
 (34) 

{0,1}j

ftw  (35) 

The objective function minimizes the total 
cost of flight delays. The set of constraints are 
classified into two categories: capacity constraints 
[(29)–(31)] and connectivity constraints [(32)–
(34)]. The capacity constraints ensure that the flow 
is bounded by the capacities of each resource in 
the system–airports and sectors. For example, 
constraint set (31) ensures that the total number of 
flights within a sector during any time interval 
does not exceed the sector capacity during that 
time period. Within the connectivity constraints, 
there are two subcategories: sector and flight 
connectivity. The sector connectivity constraints 
(32) ensure that each flight passes through the 
proper sequence of sectors in its route between 
origin and destination airports. The flight 
connectivity constraints (33) ensure that an aircraft 
must spend a minimum “turnaround” time at an 
airport before it can depart on its subsequent leg. 
Constraint set (34) ensures that the decision 
variables are nondecreasing, while (35) ensures 
they are binary. 

There are several variants of the deterministic 
ATFM optimization problem. In [71] a binary IP 
was proposed for the TFM problem, which 
considers controller workload, airspace safety, and 
equity among airlines. Subsequently, in [72] and 
[73], the binary IP was extended to incorporate 
rerouting. 

E. An Example 

This section presents an example of how the 
deterministic optimization methods for ATFM can 
be applied to improve decision-making in a 
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practical setting. Fig. 14 shows the flight tracks, 
on a weather-free day, for aircraft arriving at 
Chicago O’Hare (ORD) from various origin 
airports. For reference, FACET [19] generated and 
displayed the flight tracks from ETMS data. Due 
to the heavy volume of traffic scheduled for ORD, 
the Chicago TRACON (C90) implements 10 mi-
in-trail (MIT) restrictions at the two east arrival 
fixes, Pullmam (PMM) and Knox (OXI). Due to 
the limited airspace available in Chicago Center 
(ZAU) to meet these 10 MIT restrictions, the 
restrictions are subsequently passed back to the 
two centers adjacent to ZAU to the east, which are 
Cleveland Center (ZOB) and Indianapolis Center 
(ZID). The passed-back restrictions for the 
northernmost flow that arrives over PMM remains 
at 10 MIT; however, since three streams merge 
over the southern OXI fix, each stream under 
current operations typically receives 30 MIT. The 
rational for applying 30 MIT is that if three traffic 
streams are spaced by 30 MIT restrictions, on 
average the combined stream will be spaced by 10 
MIT, which of course is rarely the case. Finally, 
due to the limited available airspace in ZOB to 
properly space the northernmost flow that passes 
over PMM, the restrictions on this flow are 
typically passed back to New York Center (ZNY) 
and Boston Center (ZBW) as 20 MIT restrictions. 

Fig. 15 illustrates three approaches to 
achieving 10 MIT for the ORD arrival flows that 
pass over the PMM and OXI fixes. The rightmost 
example in this figure represents the restrictions 

imposed under current day operations, as 
previously discussed. The middle example 
represents a refinement over current day 
operations in which restrictions are not 
automatically passed back to ZNY and ZBW, 
while the leftmost example represents a scenario 
in which no restrictions are passed back. All 91 
flights departing between 10:00 and 13:00 
Coordinated Universal Time (UTC) that were 
destined for ORD, and crossed either PMM or 
OXI, were considered for this case study. The 
remainder of flights in ZNY, ZOB, ZBW, and 
ZAU Center were not controlled in this problem. 
The time-varying airport arrival, airport departure, 
and sector demand associated with these flights 
were calculated and subtracted from the nominal 
airport arrival rates, airport departure rates, and 
sector capacities to establish reduced capacities for 
these resources. 

In terms of total delay, the approach used to 
manage ORD arrival flows under current day 
operations is the most overly restrictive and results 
in 785 min of delay. For this scenario, an RBS-
based algorithm scheduled flights in order to meet 
the MIT restrictions at the locations of the six 
magenta rectangles in Fig. 15. When restrictions 
are only passed back to Chicago’s first-tier centers 
(ZOB and ZID), the results reduce to 735 min, 
which represents a 5% delay reduction. Finally, 
when a deterministic optimization model assigned 
departure delays to aircraft subject to the MIT 
restrictions placed at the airport arrival fixes, and 
en route sector capacity constraints were 
considered, the total delay reduced to 343 min 

 

Fig.  14. Historically validated miles-in-trail restrictions 
for Chicago arrivals. 

Fig.  15. Three approaches to applying 10 miles-in-trail 
at the PMM and OXI arrival fixes. 
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(i.e., savings of 56%). 
The deterministic optimization model was 

applied to test the sensitivities of the results under 
varying demand and capacity, which are presented 
in Table 2. Clearly, if the traffic volume increases 
threefold, as is predicted in the Next Generation 
Air Transportation time-frame [4], without any 
increases in en route or surface capacity, the 
problem becomes infeasible. The infeasibility 
results from a constraint in the binary integer 
program model that limited the maximum ground 
delay of a flight to 200 min or less. In other words, 
demand increase in the NAS must occur in parallel 
with technological changes and capacity 
enhancements. From the table, it is evident that the 
ORD arrival fix capacities pose more severe 
constraints than en route sector capacities. For 
example, under the scenario in which en route 
sector capacities remain at the present-day level 
while the airport arrival fix capacities increases 
twofold, there is a feasible solution (total delay of 
approximately 13,000) compared to an infeasible 
solution when airport fix capacities remain at 
today’s level. For a scenario with three times 
current traffic and two times ORD arrival fix 
capacity, increasing the en route sector capacity 
from two to three times does not reduce the total 
delay since the capacity is exceeded at the arrival 
fix. If capacities of all resources increase 
proportional to the forecasted demand growth, the 
average delay remains the same as the current 
level. 

 

F. Accommodating Uncertainty 

Deterministic models for ground holding are 
applicable when airport capacities in the future 
hours are known in advance with perfect 
information. In reality, this is rarely the case. To 
date, efficient stochastic optimization methods 
have been developed to solve the single-airport 
GHP. A limited amount of literature exists on 
probabilistic decision-making models under en 
route congestion. 

In [74], an IP formulation of the multiperiod, 
two-stage stochastic optimization model for the 
SAGHP was first proposed. In that model, 

uncertainty in airport capacity is represented by a 
finite set of scenarios, each of which represents a 
time-varying profile of the airport capacity that is 
likely to occur. The goal is to assign ground delays 
to flights in the face of uncertainty in airport 
capacity to minimize the total expected delay cost. 
More recently, [75] showed that for certain convex 
ground delay cost functions, the slot (i.e., ground 
delay) assignment from [74] model matches the 
first-scheduled first-served principle and, hence, is 
equitable. 

A linear IP, the dual of which reduces to a 
minimum cost network flow problem to decide on 
the set of planned airport arrival rates (PAARs) 
given a set of possible scenarios of airport 
capacity, was proposed in [76]. An interesting 
property of the model in [76] is that the objective 
function is invariant to slot assignment and 
intraairline substitutions, which occur at the later 
stages. The output of this model (i.e., the set of 
PAAR) can be used to set GDP rates, which can 
then allocate slots to airlines. This makes the 
model in [76] the most relevant decision support 
tool for GDP planning under the CDM paradigm. 

Both the models in [74] and [76] can be used 
to decide the optimum set of PAARs in face of 
uncertainty in airport capacity. Thereafter, a slot 
allocation algorithm, such as the RBS, must be 
applied to allocate arrival slots to individual 
airlines. Models that simultaneously decide on the 
PAAR and slot assignment to individual (or 
sometime groups) aircraft were proposed in [77] 
and [78]. These are based on multistage stochastic 
optimization based techniques [79], where ground-

Table 2 Sensitivity Analysis 

Traffic 
Demand 

En route 
Sector 

Capacity 

Chicago 
Arrival Fix 
Capacity 

Delay 
(min.) 

Average 
Delay 
(min.) 

1X 1X 1X 343 4 

3X 1X 1X Infeasible - 

3X 2X 1X 18,606 73 

3X 1X 2X 13,022 51 

3X 2X 2X 4,718 19 

3X 3X 2X 4,718 19 

3X 3X 3X 1,008 4 
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holding strategies can be revised under updated 
forecasts. In addition to capacity scenarios, these 
models require as an input a decision tree, whose 
branching points and branches themselves reflect 
changing airport capacity profile. 

A major challenge in using the scenario-based 
models in practice, as highlighted by [80], is the 
development of capacity scenarios and a decision 
tree. Statistical clustering technique to develop 
capacity scenarios for an airport based on 
historical data was proposed in [80]. More 
recently, [81] proposed a scenario-free sequential 
decisionmaking problem, based on dynamic 
programming techniques, for the stochastic 
SAGHP. 

Stochastic optimization models that account 
for both airport and en route airspace constraints 
decide on rerouting along with ground holding 
aircraft. Like their deterministic counterparts, 
these problems are usually associated with a high 
degree of computational complexity. The problem 
of dynamically routing an aircraft under 
uncertainty in weather forecasts in a piece of 
airspace using Markov decision process was 

addressed in [82]. An advanced methodology, 
which introduces robustness to the solutions when 
the components of the transition matrix are 
stochastic, was proposed in [83]. In [84] and [85], 
multistage stochastic optimization models for 
limited rerouting of flights arriving at an airport 
when weather blocks certain regions of the 
airspace in the vicinity were proposed. Their 
research showed significant promise in 
dynamically rerouting flights as opposed to static, 
predeparture route choice. 

In [86], a statistical method predicted 
congestion at en route sectors using three main 
parameters: 1) look-ahead time, 2) predicted peak 
traffic count, and 3) traffic pattern at a given 
sector. These probabilistic congestion predictions 
were used in [87] to develop an incremental 
decision support system, based on Monte Carlo 
simulation, to control flight maneuvers such as 
ground delay and rerouting.  

G. Software 

One of the primary challenges associated with 
applying the optimization approaches described in 

 

Fig.  16. Java-based client interaction with the FACET application programming interface. 
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the previous sections is supplying these models 
with operational flight, weather and airspace data, 
and assessing the performance of the flow control 
strategies developed by these models in realistic, 
large-scale NAS-wide modeling and simulation 
environments. This need for combining 
optimization and modeling approaches has been 
an area of recent interest [51]. To explore this 
issue, NASA has recently developed an 
application programming interface (API) for 
FACET [19] that leverages many of the core 
capabilities designed in the development of the 
Configurable Airspace Research and Analysis 
Tool-Scriptable (CARAT#) [88] system. More 
than 600 FACET methods are available through 
the API that cover a wide range of capabilities, 
ranging from starting a simulation to forecasting 
the future position of a set of scheduled flights. In 
addition to methods for accessing information 
about the state of aircraft and the airspace, 
methods also exist for rerouting flights, departure 
delaying flights, and imposing airborne flight 
delays.  

A graphical depiction of a Java-based client 
that utilizes the FACET API, and was used in 
generating the results presented in Section V-E, is 
illustrated in Fig. 16. Starting at the box labeled 
“Step 1: Start Simulation,” the FACET application 
is instantiated and an N minute simulation is 
started with a user-specified input file containing a 
list of active and scheduled flights. For the 
purpose of this study, the list of scheduled and 
active flights were obtained from a historical 
ETMS [6] data file, and the simulation planning 
horizon was set to 3 h. After starting the 
simulation, the software underlying the box 
labeled “Step 2: Log airspace/airport 
occupancy/usage statistics” was used to create a 
Java hash table of “Aircraft” objects that was used 
to record the entry time and usage time for all 
airports and sectors along the flight path of each 
scheduled and active flight in the simulation. 
Following the N minute simulation, the nominal 
airport and airspace capacities were systematically 
reduced in the step labeled “Step 3: Generate 
weather impacted airspace/airport capacity” to 

simulate the impact of constraints, such as 
weather-induced en route capacity constraints. 

In the box labeled, “Step 4: Create 
CPLEX/AMPL Input File,” the forecasted aircraft 
and airspace demand data is formatted using A 
Modeling Language for Mathematical 
Programming (AMPL) [89] to provide the inputs 
to the previously defined binary integer 
programming model. After casting the binary 
integer-programming model presented in Section 
V-D in the AMPL format, both the AMPL 
formatted input file and model file are passed into 
ILOG’s AMPL/CPLEX optimization software to 
assign the optimal departure delays to the set of 
flights included in this study. This optimization 
occurs in the section of the code labeled “Step 5: 
Run optimization model in CPLEX/ AMPL” in 
Fig. 2, and version 10.0 of AMPL/CPLEX was 
installed on a Redhat Linux based-laptop 
computer with a 3.0 GHz Pentium 4 processor and 
1 GB of RAM to generate the results appearing in 
Section V-E. 

Finally, the two sections of the Java client that 
are labeled “Step 6: Read/Implement Flight 
Controls” and “Step 7: Generate/Introduce 
Simulation Uncertainties” are used to implement 
the optimal airborne and departure delay controls 
in FACET, and to explore the impact of demand 
and capacity uncertainties on the model’s 
solutions.  

VI. CONCLUSION/SUMMARY 

This paper provides an overview of how TFM 
decisions are made today and challenges facing 
the system in the future, and reviews the 
modeling, simulation, and optimization 
approaches for TFM facilitating system-wide 
modeling, performance assessments, and decision-
making. 

In the area of system-wide modeling, recent 
advances in the development of aggregate, or 
Eulerian, traffic flow models were discussed. 
Three models recently appearing in the literature 
were highlighted. The first model uses flow 
relations between adjacent centers to create a 
time-varying linear dynamic system model. The 
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second model spatially aggregated the flows in a 
network of interconnected, two-dimensional 
control volumes, and leveraged prior research 
from the area of highway traffic modeling. In the 
third approach, a fully continuous model based on 
a modified Lighthill–Whitham–Richards [30] 
partial-differential equation was proposed. 

The second major area covered in this paper 
was recent approaches designed to assess the 
performance of the national airspace system. 
Models based on the Weather Impacted Traffic 
Index concept, a passenger delay estimation 
model, and models that explore the propagation of 
delays throughout the NAS were examined. 

Finally, in the area of optimization, the basic 
TFM problem was cast as a two-point boundary 
value problem, and a dynamic programming 
approach to solving the problem was discussed. 
Subsequently, the state of the art in optimization 

approaches for scheduling flights under both 
deterministic and stochastic airport and airspace 
constraint scenarios was discussed. An example in 
which flights are scheduled to Chicago O’Hare 
under both current and future traffic demand 
scenarios was presented to illustrate the use of 
these models. 

Ultimately, the success of the TFM modeling 
and optimization approaches will be measured by 
their ability to improve the efficiency of TFM 
decisions in the current and future systems. The 
example presented in this paper shows the 
potential savings from an optimization approach. 
The actual savings will depend on policies and 
improvements to the NAS that will enable TFM 
decisions to be communicated to a large group of 
decision-makers and executed in a cooperative 
manner.  
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