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Reducing the delays of the departing aircraft can potentially lead to improving the
efficiency of the surface operations at airports. This paper addresses a departure scheduling
problem with an objective to reduce total aircraft delays subject to timing and ordering
constraints. The ordering constraints model the queuing area of airports where the aircraft
align themselves in the form of chains before departing. By exploiting the structure of the
problem, a generalized dynamic programming approach is presented to solve the departure
scheduling problem optimally. Computational results indicate that the approach presented
in this paper is reasonably fast, i.c., it takes less than one tenth of a second on average to
solve a 40 aircraft problem. Also, the approach produces optimal sequences whose delay
is approximately 12 minutes, on average, less than the delays produced by the First Come
First Serve (FCFS) sequences.

Nomenclature
A Number of aircraft
a(1) Release time of aircraft ¢
t(%) Departure time of aircraft ¢ (decision variable)
sep(, j) Minimum separation in time required for aircraft j to wait to depart after aircraft ¢
l Number of queues
q; Number of aircraft in queue
m Variable representing the queue
a’ 4t aircraft waiting to depart in the i** queue
k; Total number of aircraft departed from the i*" queue
(my ki, ..., k) A state defined by all the departed aircraft given that the last departing aircraft is
from queue m
S Set of all possible states

SPAN(m,kq,..., k) Optimum throughput corresponding to the state (m, k1, ..., ki)

DELAY (m,ky,...,k)  Optimum delay corresponding to the state (m,k1,...,k;)

DELAY;(m,k1,...,k;) Delay of a sequence, s, corresponding to the state (m, k1,...,k;)

LASTs(m,kq,... k) Departure time of the last departed aircraft of a sequence s
corresponding to the state (m, k..., k;)

Fralm, ki, ... k) Set of all the non-dominated feasible sequences
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corresponding to the state (m, kq,...,k;).
Subscript
i Variable number

I. Introduction

Reducing delays of aircraft operating at any airport is becoming important as traffic demand and conges-
tion increases. The problem addressed in this paper is that of a departing scheduling problem that arises on
the surface of an airport. The objective of the Departure Scheduling Problem (DSP) is to find a departure
time for each aircraft such that the total delay of all the aircraft is minimized subject to timing, separation
and ordering constraints. The delay for an aircraft is defined as the difference between its departure time
and its release time (i.e., earliest possible departure time). The timing constraint requires that the depar-
ture time assigned to an aircraft is at least equal to its release time. Due to the wake vortex generated by
departing aircraft, the separation constraint requires that the departure times of any two aircraft must be
separated at least by a constant that is dependent on the type of the two departing aircraft. It is assumed
that the ordering constraints are in a form of chains as illustrated in Fig. 1. These chain like ordering
constraints represent a simplified model of the runway queue structure present at airports such as the Dallas
Fort Worth International (DFW) Airport.

In this paper, a generalized dynamic programming approach discussed in Carraway and Morin! is used
to solve the DSP optimally. This approach improves on the work by Psaraftis'® . Psaraftis proposed a
dynamic programming approach to address a DSP with no timing constraints that restrict the departure
time of each aircraft to be at least greater than its release time. Computational results indicate that the
approach proposed in this paper is reasonably fast, i.e., it takes less than one tenth of a second on an average
to solve a 40 aircraft DSP with three queues. Also, the approach produces optimal sequences whose delay
is approximately 12 minutes, on an average, less than the delays produced by the First Come First Serve
(FCFS) sequences.

The DSP is formulated in Section II and a review of the available literature is presented in Section III.
In Section 1V, it is shown why a direct extension of the dynamic programming approach by Psaraftis may
not work for the DSP. The generalized dynamic programming approach for the DSP is presented in Section
V. The approach presented in this paper can also be extended to some generalizations of the DS P as shown
in Section VII. The paper ends with conclusions in Section VIII.

II. Problem Formulation

Consider a set of n departing aircraft denoted by A = {1,2,...,n}. Let ¢(i) be the decision variable that
denotes the departure time for the i*" aircraft. Aircraft i is available to depart only after its release time which
is denoted by «(i) (i.e., t(i) > «(i)). If aircraft i departs before aircraft j, then their corresponding departure
times (i.e., t(i) and ¢(j)) must be at least separated by a constant denoted by sep(i,j). This separation
requirement depends on whether aircraft ¢ departs before aircraft j or vice versa (i.e., sep(, j) need not be
equal to sep(j,4)). There are | queues available and each aircraft must be present in one of those queues.
It is assumed that the separation times satisfy the triangle inequality, i.e. sep(i,j) + sep(j, k) > sep(i, k)
Vi, j, k,i # j # k. Let the order of aircraft present in the i** queue be denoted by {at,..., afh} where ¢; be
the total number of aircraft present in the i*" queue. In the given order for the i*" queue, aircraft a} must
depart before a}, ab must depart before a} and so on. The delay of the i* aircraft is defined as t(i) — a(i).
The objective of the scheduling problem is to determine the departure times of all the aircraft that minimizes
the total delay, .7, (t(i) — a(i)), subject to the ordering and timing constraints.

III. Background and Literature Review

There are several heuristics® ~¢ and exact algorithms'®: 11:15: 18,19 ayailable for addressing aircraft schedul-

ing problems in the literature. Most of the work related to the DSP in air traffic control has been in the
area of scheduling aircraft landings. The constraints in problems involving landing aircraft are very similar
to that of the constraints in the DSP. The precedence or ordering constraints of the DSP addressed in
this paper has a special structure where the departing aircraft are queued up in the form of chains. These
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Figure 1. The DSP with three queues. Aircraft cannot overtake each other if they belong to the same queue.

chain like ordering constraints present in the DSP represent a simplified model of the physical layout of the
runway queues present in airports such as the DFW airport. A landing aircraft problem may not have this
special structure.

Irrespective of whether an algorithm produces an optimal or a good, approximate solution, it is important
to note that it would be useful to develop algorithms that can ultimately be used in a real-time simulation
system. An exact algorithm produces optimal solutions but may have a running time that could make it less
suitable in a real-time simulation. On the other hand, a heuristic could run fast but there is no guarantee
on the quality of the solutions it produces. Optimal costs or tight lower bounds to the optimal costs are
anyway required to evaluate the quality of a heuristic. Currently, the authors are involved in the development
of the Surface Management System? (SMS) that can provide real-time advisories to human controllers on
scheduling movements of aircraft at airports. In this context, one of the goals of the paper was to develop an
algorithm that can produce high quality solutions for the D.SP involving 40 aircraft in the order of seconds.
The motivation behind choosing a 40 aircraft instance is that during peak hours at DFW airport, there are
approximately 40 departures in one hour from each of the main runways. Due to the uncertainties involved
in the release times of the aircraft, algorithms are expected to plan departure schedules for at most an hour.
In the following discussion, a review of the existing literature related to the single runway, aircraft scheduling
problem is presented.

Dear and Sherif®>* were among the earliest to address the static and dynamic scheduling of landing
aircraft. In static scheduling, a sequence/schedule is determined for a given set of aircraft. In dynamic
scheduling, new aircraft are added continuously to the system and the schedules need to be updated frequently
to include the new set of aircraft. Dear and Sherif? introduced the concept of Constrained Position Shifting
(CPS) as a feasible way to address the dynamic problem. In this concept, a First Come First Served
Sequence (FCFS) is initially generated based on the predicted landing times of all the aircraft. Then, an
optimal sequence is generated such that no aircraft can be shifted more than a given number of positions
away from its original position in the FCFS sequence. For example, if the position of an aircraft in the FCFS
sequence is 5 and the maximum number of shifts allowed is one, then the aircraft in the optimal sequence
can be in positions 4, 5 or 6. If CPS is not present, the position of an aircraft can be shifted several places
for each update of the aircraft sequence. Therefore, by incorporating CPS while scheduling aircraft, one can
eliminate these huge shifts in the positions of the aircraft. Heuristics were presented in Dear and Sherif* to
solve the aircraft scheduling problem with CPS. In Section VII, it is shown how the approach presented in
this paper can also be extended to find optimal solutions for the DS P with the CPS constraints.

There are several other heuristics available for variants of the aircraft scheduling problems
Venkatarishnan et al.® presented a heuristic based on the dynamic programming approach by Psaraftis
to solve the arrival scheduling problem with time window constraints. Genetic algorithms are given in Abela
et al.% , and Ernst et al.'! to solve a generalization of the arrival scheduling problem. Meta-heuristics includ-
ing simulated annealing and tabu search methods are presented for a generalization of the DSP in Atkin et
al.7~? where the authors are motivated by the taxi layout of the London Heathrow Airport with complex
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holding point structures and additional constraints.

There are few ways in which optimal solutions can be obtained for aircraft scheduling problems. One way
is to formulate the problem as an integer or a mixed integer linear program'% 17 and solve the resulting
program using any standard optimization software like CPLEX. This approach has a drawback, in the sense
that the running times of the solvers could vary significantly'” depending on a given instance of the problem.
However, it is important to note that this approach can deal with several generalizations of the DSP. For
example, it can readily deal with the problems where the assumption on the separation times for the aircraft
(based on the previously mentioned triangle inequality) is not satisfied.

Another method to find optimal solutions for aircraft scheduling problems is to use the dynamic pro-
gramming'® 19 as explained in the following section. This approach exploits the chain-like ordering of the
aircraft. The next section also serves as a motivation for the approach used in this paper.

IV. Dynamic Programming

To instigate the use of generalized dynamic programming for solving the DSP, the approach given by
Psaraftis!® for a similar aircraft scheduling problem is first presented. Later, it is shown that the direct
application of the dynamic programming approach used by Psarftis!® may not work for the DSP if the
objective is to minimize the total delay of all the aircraft and there are timing constraints for each aircraft
as present in the DSP.

The approach in Psaraftis!® can be used to solve a similar sequencing problem called the Makespan
Scheduling Problem (M SP) with an objective of minimizing the makespan (i.e., the departure time of the
last aircraft given by max? ;(¢;)) subject to exactly the same constraints as in the DSP. Minimizing the
departure time of the last aircraft is also important in air traffic applications as this objective corresponds
to maximizing the runway throughput.

The MSP is associated with a set of states, S, where each state (m,ki,...,k;) € S is defined by the
number of aircraft that has departed from each of the queues (i.e., k; aircraft has departed from the ‘"
queue for i = 1,...,1) given that the last departing aircraft is from queue m. Let the value function,
SPAN(m,ki,...,k;), denote the optimal makespan corresponding to the state (m, kq,..., k).

This value function can be computed recursively using the following equations:

0, ifki=ka=...=k =0,
SPAN(m, ki, ..., ki) =
minpeq max (SPAN (n, ki, ..., k) + sep(ayy ,af ), a(ay’ ), otherwise
(1)
where
Q=1[i:k>0] (2)
and fori=1,...,1,
W ki—1, if i =m,
! k;, otherwise.
3)
The optimal makespan for the MSP is then given by OPT,,s, = ming,—1, . SPAN(m,qi,...,q). The
method to compute OPT,,, is to first start with SPAN(m, k1,..., k) for ki = ko = ... = k; = 0 and then
compute SPAN (m, ky,...,k;) recursively for lexicographically increasing values of k; through k;. While
performing the recursion for the state (m,k1,...,k;), the optimal queue corresponding to the minimization

of SPAN(m,ky,...,k;) can also be stored in an array denoted by SOL(m,ki,...,k;). In this way, the
optimal sequence corresponding to the states in S can be retrieved at the end of the recursion. In general,
the dynamic programming approach for any problem relies on the following strong principle of optimality:
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Any optimal policy has a property that whatever the initial state and initial decision are, the remaining
decisions must constitute an optimal policy with regard to the state resulting from the first decision.

It is easy to check that the definition of state and the value function given in equations (1-3) ensures that
the principle of optimality is satisfied and as a result the equations correctly produce an optimal solution
for the M SP. Now, let us directly extend the above approach to the objective of the DSP where the total
aircraft delays, given by ", (¢(i) — «(i)), must be minimized. For the case when the release times of all the
aircraft are zero (i.e., a; = 0 for i = 1,...,n), by modifying the definition of the value function but using
the same set of states as in S, Psaraftis'® showed how to compute an optimal DSP sequence. In this paper,
the more general case is considered when at least one of the release times of the aircraft is not equal to zero.
This general case was not a constraint for the scheduling problem addressed in Psaraftis'® . However, for
this general case, it seems difficult to retain the same definition of state and define a value function that is
computable recursively and satisfies the strong principle of optimality. The following discussion attempts to
explain this difficulty and will also motivate the use of generalized dynamic programming® for the DSP.

Definition IV.1 Let DELAY,,(m,k1,...,k;) denote the total optimal delay corresponding to the state
(m,k1,..., k). Also, let LASTop(m,ky, ..., k) denote the makespan (the departure time of last departing
asreraft a’,;“m) corresponding to the optimal departure sequence of DELAY p(m, k1, ..., k).

For the following argument, let us assume that there are only two queues (I = 2). Also, let us assume that
there is a unique departure sequence that minimizes DELAY,, (1, k1, k2) and a unique departure sequence
that minimizes DELAY,(2, k1, k2). Now, let us try to compute DELAY,,.(1, k1 + 1, k2) recursively using
already computed optimal sequences for DELAY (1, k1, ks) and DELAY,p.(2, k1, k2). DELAY (1, k1 +
1, ko) is the optimal cost corresponding to the state where k1 + 1 and ko aircraft have already departed from
queue 1 and queue 2, and the last departed aircraft was from queue 1 (i.e., the aircraft denoted by a,lCl +1)'
As there are only two queues, the aircraft that departed before a,lcl 41 can either be a,lCl or aig. Therefore the
optimal delay cost, DELAY,,;(1,k1 + 1,k2), and its corresponding makespan, LAST,,:(1,k1,...,k;), can
either be equal to

DELAY (1, k1 + 1, k2) = Cost1 and LAST,p (1, k1 + 1, ko) = Time,
or be equal to

DELAY (1, k1 + 1, k2) = Coste and LAST,, (1, k1 + 1, ko) = Times,
where

Cost; = DELAY (i, k1, ko) + max(LASTope (i, k1, k2) + sep(a};i, Ay +1), (ag, 11)) — alag, 1),
Time; = max(LASTope(i,k1,k2) + sep(aii,aiﬁl), oz(a,lcl_H)),

(4)

for i = 1,2. Consider the case when Cost; < Costy. In this case, DELAY,,(1,k1 + 1,ke) = Cost; and
LAST,, (1, k1+1, k) = Time;. However, it might still not be possible to ignore the sequence corresponding
to Costs even though Costs > Costy. The reason why the solution corresponding to C'osty cannot be ignored
is because if we are interested in computing the next optimal cost, DELAY,,:(1, k1 + 2, kz), then it is not
only dependent on DELAY,,(1,k1 + 1, k2), but also dependent on the departure time of the last departed
aircraft, LAST,p (1, k1 + 1,k2). It is possible that Cost;y is less than Costy but Time; might be greater
than Times. In such a scenario, the solution corresponding to Costs might lead to a better sequence for
DELAY (1, k1 + 2, ko) even though it was not optimal for DELAY,,:(1, ki + 1, k2).

If the principle of optimality is not satisfied by the optimal value function and its corresponding states,
then it is possible that the definition of state is not rich enough, i.e., it does not carry enough of the process
history to determine the optimality of the remaining decisions. There are few ways to enhance the definition
of state to address this challenge. Invariably, any enhancement will significantly increase the size of the
state space. If one can extend the state to include time also in the definition of state, then it is possible
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to use dynamic programming to solve the DSP as shown for similar problems in Bianco et al.,'? Lee and
Balakrishnan.'® However, this approach requires discretizing time into intervals and hence increases the
number of states as a function that is inversely proportional to the interval size. There is also an alternate
approach to address this challenge for DSP through generalized dynamic programming! without increasing
the size of the state space. Theoretically, though generalized dynamic programming also could increase
the running time significantly, computational results presented in Section VI suggest that this approach is
reasonably fast for the DSP.

V. A Generalized Dynamic Programming Approach

Instead of having just one objective of minimizing total delay, let us assume that there are two objectives
where the first objective is to minimize total delay and the second objective is to minimize the departure
time of the last departed aircraft. When there are multiple objectives, instead of optimal solutions, one is
interested in determining pareto-optimal) solutions or policies. Consider two different departure sequences
s and s’ with their corresponding aircraft departure times being ¢1,ts,...,t, and #;,t5,...,t) respectively.
With respect to the two objectives, the sequences s and s’ are non-dominated if

n

either » (t(i) — a(i)) > Y (¢'(i) — a(i)) and max t(i) < max t'(i)
i=1

. 1=1,...,n i=1,...,n
=1

n n

or Z(t(z) —a(i) < Z(t'(z) —afi)) and max (i) > max t'(i).

prt P} i=1,...,n i=1,...,n

Generalized dynamic programming approach! can be used for addressing multi-objective problems and
is based on the following weakened principle of optimality:

Any non-dominated policy has a property that whatever the initial state and initial decision are, the re-
maining decisions must constitute a non-dominated policy with regard to the state resulting from the first
decision.

By including both the cost incurred due to total delay and the departure time of the last departure
aircraft as the two objectives, the generalized dynamic programming approach will eliminate scenarios such
as the one discussed in the previous situation where any two departure sequences corresponding to a state
are compared purely based on their total delays. Prior to the application of this approach to the DSP, few
definitions are stated first in the following discussion.

Definition V.1 A feasible departure sequence corresponding to the state (m, k1, ..., k;) is a sequence where
the first k; aircraft has already departed from the it queue (i = 1,...,1) and the last departed aircraft is from
queue m. Let the first objective, DELAY (m,kq,...,k;), denote the total delay of a feasible sequence, s,
corresponding to the state (m,ky, ..., k). Let the second objective, LASTs(m,k1,...,k;), denote the depar-
ture time of last departing aircraft, aj , of the feasible sequence, s, corresponding to the state (mykq,... k).

Definition V.2 Departure sequences s,s’ corresponding to the state (m,ky,...,k;) are considered to be
non-dominated

e if cither DELAY:(m, ku, ... ki) < DELAYy (m,ki,...,k) and LASTs(m, ks, ..., ki) > LASTy (m, k1, ..., ki),

® Or DELAYS(m, kl,...,kl) > DELAY;/(m, k1,..,,]€l) and L‘/LLS”_Z—'S(’I?’L7 k’l,...,kl) < LASTS/(m,/ﬂl,...,kl).

Definition V.3 Let Fq(m,ki,..., ki) be the set of all the non-dominated feasible sequences corresponding
to the state (m,k1,...,k;). All the sequences in the set, Fpa(m,ki,..., ki), are non-dominated if any pair
of distinct sequences in Fpq(m,k1,..., k) are non-dominated.
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If Fra(m,ki,...,k;) has only one sequence, then that unique sequence must be optimal for both the
objectives defined by the total delay and the makespan. If F,4(m,k1,...,k;) has more than one sequence,
then there must be at least one sequence in F,q(m,k1,..., k) that minimizes the total delay cost and an
other distinct sequence that must be optimal for the makespan objective. The optimal sequence for the
DSP can be found by first computing the set of all the non-dominated sequences corresponding to the

states Fnq(m,k1,...,k) for m =1,...,] and then choosing a sequence that minimizes the total delay cost.
Fra(m, ki, ..., k) can be calculated recursively using the following equations:
fnd(m,kl,...,kl) = {S NS }"(m,kh...,kl),
s and s" are non-dominated for any s’ € F(m, ky,..., k), s #s'}, ()
where,
0, ifki=ko=...=k =0,
}-(m,kh...,kl) =
{s:s=(ra ),r € Fna(n,ky,... . k)),n € Q} otherwise,

(6)

and @, k; are defined in equations (2,3) respectively. To check whether two sequences s and s’ are non-
dominated in F(m,kq,..., k) in equation (5), one needs the values of LASTs(m, k1,...,k;) and DELAY,
(m, k..., k) for any sequence s € F(m,k1,...,k). Now, note that a sequence s in F(m,k1,...,k;) was
formed by adding aircraft a}’ to the end of r where r is a sequence that was added in the previous stage
(refer to equation 6). When an aircraft ap' is added at the end of a sequence r to form a new sequence s,
the departure time of the last aircraft in s and its total delay can be computed as follows:

a(agn), ifk1:k2:...:kl:0,
LAST (m,kq,..., k) =
max(a(ay! ), LAST.(n, Ky, ..., k) + sep(ay, ,a}’ ) otherwise,

DELAY,(m, k..., k) DELAY,(n,k,,...,k}) + LASTy(m, k1. .., ki) — a(al" ).

(7)

The proof that the above recursive equations correctly computes all the non-dominated solutions for each
state is straightforward and can be referred to in Carraway and Morin.*

VI. Simulation Results

Simulation results are presented in this section to answer the following two important questions: 1) is
the generalized dynamic programming approach proposed for solving the DS P fast enough to be considered
for implementation in a real-time decision support tool? and 2) on an average, how does the total delay
corresponding to an optimal sequence for the DS P compare with the total delay corresponding to a sequence
computed from a First Come First Serve (FCFS) discipline? A FCFS discipline just orders the aircraft based
on their release times and is generally considered as a baseline solution over which the benefits of optimization
are assessed.

The approach presented in the previous section was applied to a DSP with [ = 3 departure queues. The
number of departure queues was chosen to be three because the DSP was motivated by the taxi layout of
DFW airport where the main departure runways have three queues. The types of aircraft considered in the
simulations were Large, B757 and Heavy. The separation matrix given in Fig. 2 was used for the simulations.
For example, if a heavy aircraft follows a large aircraft on a departure runway, then their departure times
must be separated by at least 73 seconds.

Any departure scheduling algorithm would be used to find the departure times of aircraft over a planning
horizon. Generally, this planning horizon may not be more than an hour because of the uncertainties involved
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Leading aircraft

Type Large | Heavy | B757

Large 73 104 92
Trailing aircraft

Heavy 73 88 92

B757 73 88 92

Figure 2. Minimum required departure separation between aircraft in seconds.

in predicting the release times of the aircraft. For the study, the planning horizon was varied from ten minutes
to one hour in increments of five minutes. The planning horizon determines the number of aircraft used in
the study. During peak hours, as there are approximately forty departures in one hour (3600 seconds) from
each of the main runways at DFW airport, if 7" is the planning horizon in seconds, the number of aircraft
corresponding to the planning horizon was chosen to be ny = ngo‘looj = L%J. For example, T' = 1800
corresponds to an instance with 20 departing aircraft. As a result, varying the planning horizon from ten
minutes to one hour correspondingly varies the number of aircraft from 6 to 40.

For each time period T (or equivalently the number of aircraft nr), 100 instances were generated. Cur-
rently, most of the departing aircraft at DFW airport are of type Large. This scenario could change in

the future and is dependent on factors such as traffic demand, fuel costs and airline preferences. For this

simulation study, aircraft types were chosen so that no particular type is dominant. If {1,...,nr} denote
the aircraft used in a DSP instance, then the first n; aircraft, {1,...,n;}, were chosen to be of type Large,
the next nrs7 aircraft, {n;+1,...,n;+nrs7}, were chosen to be of type B757 and the remaining n;, aircraft,
{n;+n7s7+1,...,n7}, were chosen to be of type Heavy where,
ny
n = |—=|,
l 5]
ny
nrsr = L?Jy
Np = Nr — Ny — N757.

(8)

The above numbers were chosen so that the number of aircraft corresponding to any aircraft type is
approximately equal to one third of the total number of aircraft. To generate an instance and to assign
aircraft to the queues the following rules were used:

e The number of aircraft in each of the queues except the I**

k,ZLnTTJ fOI‘iZl,...,l—l).

queue was chosen to be equal to | “£ ] (i.e.,

lth

e The number of aircraft, k;, in the I'* queue was equal to np — (I — 1)[ *£].

e The release time of each aircraft (in seconds) was chosen from an uniform distribution on the interval
[0,T].

e A random permutation of ny aircraft was generated with the first k; aircraft from the permutation
assigned to the 1%¢ queue, the next ky aircraft from the permutation assigned to the second queue and
so on. For example, if np is 6, then a random permutation could be 2514 6 3. If [ = 3, then aircraft
2, 5 were assigned to the first queue, aircraft 1,4 were assigned to the second queue and aircraft 6,3
were assigned to the third queue.

e All the aircraft in each queue were ordered according to their increasing release times. For example, if
aircraft 2,5,1 assigned to the same queue have their release times as 10,5,7 seconds respectively, then
their ordering in the queue is {5,1,2}.
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The algorithms were implemented on a Pentium 4, 3.00 GHz, 512 MB RAM. The computational results for
three queues are presented in Fig. 3. The results show that a forty aircraft DS P can be solved to optimality,
on an average, in less than one tenth of a second using the generalized dynamic programming approach
(Fig. 3(a)). Also, the total aircraft delays corresponding to the optimal solutions are approximately twelve
minutes lesser, on an average (Fig. 3(b)), than the delays corresponding to the FCFS sequences. Similar
results are also presented for four queues in Fig. 4. These results show that the approach presented in this
paper can produce optimal solutions relatively fast and can be used in a real-time simulation system.

VII. Possible Extensions to Variants of the DSP

DSP with time windows:

In the DSP addressed in this paper, one of the constraints was that each aircraft can be scheduled only
after its release time. In the DSP with time windows, a set of disjoint time intervals is given for each
aircraft. Each aircraft can be scheduled only in any of the given set of intervals. This problem arises in the
scenarios where a departure runway could be used by arrival aircraft for runway crossings. In this scenario,
if specific time slots are assigned for the arrivals to use the runway, then each departing aircraft can be only
assigned in a set of disjoint time intervals. The effect of these additional time constraints to the DSP is
that the departure time defined in equation (7) may become infeasible for the new problem. To modify the
approach to address a DSP with time window constraints, let 7; C RT denote the set of time intervals
given for aircraft i. Note that T; may be non-convex also. Now the set of all the non-dominated solutions
can be calculated using exactly the same equations in (5) except that the definition of LASTs(m, k1, ..., k;)
corresponding to a sequence s in equation (7) needs to be modified to the following one:

min{t:tGTagt }, if]ﬁ:kgz...:kl:(),
LAST,(m,ky,.... k) =
min{t: ¢ € Top t > LAST,(n,ky, ..., k) + sep(ap, ,ai )}, otherwise.

9)

DSP with Constraint Position Shifting (CPS)

As discussed in Section ITI, CPS restricts the position of the aircraft such that no aircraft can be shifted
more than a given number of positions away from its corresponding position in the FCFS sequence. Let
the position of aircraft ¢ in the FCFS sequence be denoted by FCF'S;. Also, let POS? be the position of
aircraft 7 in a departure sequence s. If the maximum number of shifts is denoted by M NS, a DSP with
CPS constraints requires that |[POS; — FCFS;| < MNS for s to be a feasible departure sequence. To use
the generalized dynamic programming to solve the DSP with the CPS constraints, the equations given in
(6) and (7) needs to be updated as follows:

0, it |POS: — FCFS,| > MNS,y = a" ,
F(m,ki,.... k) = 0, if |[POS; — FCFS,| < MNS,y =aj' and ky = ... =k =0,
{sis=(raf ),r € Fna(n,ky,... . k)),n € Q}, otherwise,
(10)
where @, k; are defined in equations (2,3), and
00, if |POS;, — FCFSy| > MNS,y = ay’_,
LAST,(m,k1,....k) = { a(a), if [POSS — FCFS,| < MNS,y =aj" , and k1 = ... =k =0,

max(a(af ), LAST.(n, ki, ..., kj) + sep(aly ,ay ), otherwise,
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Figure 3. Results for the DSP with three queues.
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Figure 4. Results for the DSP with four queues.
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(11)

DELAY:(m,ki,...,k)) = DELAY,(n,ky,... k) + LASTs(m, k1, ..., ki) — a(all".).

(12)

VIII. Conclusions

A generalized dynamic programming approach has been used to solve a departure scheduling problem
that arises at airports. This approach finds optimal solutions to the departure scheduling problem with forty
aircraft in less than one tenth of a second on an average. Also, the total aircraft delays corresponding to the
optimal solutions are reduced by approximately twelve minutes on average compared to a first come, first
served solution. Computational results seem to indicate that the approach presented in this paper is fast
for a real-time implementation and can be used to reduce the aircraft delays at an airport. Future work can
address generalizations of the departure scheduling problem discussed in this paper including problems with
metering constraints for departure fixes, uncertainty etc.
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