
A Method of Optimally Combining Sectors

Michael C. Drew
∗

University Affiliated Research Center, Moffett Field, CA, 94035, USA

This paper describes a procedure for combining under-utilized sectors so that controllers

can be allocated to the busiest sectors at the busiest times. A Mixed Integer Linear Pro-

gramming model for systematically combining under-utilized sectors is described and its

performance is compared to another recently-developed greedy heuristic algorithm. The

MILP model produces slightly better results than the greedy algorithm. Improvements

are greater as the number of sectors considered for combining increases. While the im-

provements are modest, over time they become significant. Lengthy computation times

associated with large data sets are addressed by using the greedy algorithm as a starting

solution for the optimal solver.

I. Introduction

D
espite predictions of increased future air traffic congestion, many portions of the national airspace are,
and will continue to be under-utilized. In fact, as shown in Ref. 1, 75% of the sectors in Cleveland center

operate near or below half their capacity even during the busiest times of the day. When sectors with less
traffic volume are combined into larger sector clusters for some length of time, fewer controller teams are
required to manage the same airspace. By flexibly increasing or decreasing the number of sector clusters
in response to air traffic volume during the course of a 24-hour period, resources at the Air Route Traffic
Control Center can be allocated more efficiently.

Sector combining within centers is currently done today based on historical experience and operational
policy. Refs. 1 and 2 present a method of performing the same operation on a systematic basis using a greedy
algorithm that combines sectors into sector clusters on an hourly basis. The algorithm has the benefit of
being computationally fast and flexible and is shown in simulation to produce fewer open sectors (or clusters
of sectors) when compared with historical operational data of the same time period. However, this greedy
algorithm may miss the optimal solution (the solution with the fewest number of sector clusters), especially as
the number of sectors considered for combining grows. In Ref. 3 a hybrid branch-and-bound/neural network
trained on a metric of controller workload is used to determine optimal sector combinations. However, it is
presented with the intent of forecasting airspace configurations and traffic congestion—not as a method of
tactical decision support in the vein of Refs. 1 and 2.

This paper presents a Mixed Integer Linear Programming model that finds an optimal solution of com-
bined sectors resulting in the fewest number of sector clusters given current demand and capacity constraints.
While the objective and constraints are nearly identical to that of Refs. 1 and 2, it is shown that this model
provides a minor performance improvement over the greedy algorithm. Assuming sector combining is cal-
culated for every hour in an operational setting, over the course of a day this minor improvement translates
into a significant reduction in the number and duration of open sector clusters (measured as sector-hours).
The improvement is greater as the number of sectors considered for combining increases. For instance, if a
larger set of sectors is considered for combining than what is presently permitted, the greedy algorithm is
more likely to miss the optimal cluster combination that produces the fewest number of clusters.

This paper is arranged as follows: Section II provides some background on present-day operations with
additional details on the sector combining problem. Section III presents the approach used in developing
the optimization model including all the necessary mathematical constraints. Section IV discusses how this
system is implemented in software and the assumptions used in the simulation. Section V presents the
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results and compares the performance of the optimal Mixed Integer Linear Programming model to that of
the greedy algorithm. Conclusions and directions of future work are discussed in Section VI.

II. Background

The National Airspace System (NAS) over the continental U.S. is partitioned into 20 Air Route Traffic
Control Centers (ARTCCs, or centers for short). Each center is further subdivided into several smaller
partitions known as sectors. Sectors are partitions in altitude as well as latitude and longitude, and they are
typically classified as either low, high, or super-high according to their altitude range. Figure 1 shows the
top view of Cleveland center. There are 27 high sectors, but only 11 are directly visible from above.

Figure 1. Top view of Cleveland Center. Colors represent

a simplified notion of sector areas of specialization.

Each sector in the center is usually monitored by
1—3 air traffic controllers who communicate with
the pilots of the aircraft in the sector to ensure safe
and efficient traffic flow therein. However, during
periods of low traffic volume, it is not always neces-
sary to have a dedicated controller for every sector
in the center. It often makes sense to combine two
or more sectors together to increase the operational
efficiency of the control center. In present-day oper-
ations, sectors are only permitted to combine with
others in the same group of sectors known as an
area of specialization. Each center contains several
areas of specialization, which are contiguous subsets
of sectors, and controllers are trained and certified
to manage each of the sectors in their area. Thus, a
single controller is capable of handling a cluster of
combined sectors within his or her area of special-
ization when traffic permits. A simplified notion of
three areas of specialization are represented by the
three color shades in figure 1. Current research in
sector design and the generic sectors4 concept may, in the future, yield areas of specialization with more
sectors, or eliminate their need all together.

In current operations, the traffic demand and complexity within a sector must be within the controller
team’s ability to manage it. While various metrics of traffic complexity and sector capacity are currently
being researched, the sector traffic complexity metric in operational use today is the maximum instantaneous
aircraft count over a 15-minute interval.1 This metric is forecast in multiple 15-minute intervals for some
time horizon (typically one hour) and is available to controllers and their supervisors via ETMSa so they
can anticipate future workload and make adjustments as necessary. The capacity of a sector is estimated by
the Monitor Alert Parameter (MAP), which is the maximum instantaneous aircraft count suggested for a
sector. Typically, controllers and traffic managers strive to keep the maximum instantaneous aircraft count
of a sector less than the sector’s MAP value, but violations of this constraint are not uncommon depending
on traffic characteristics. Because these two metrics of sector demand and capacity are used in current air
traffic operations, they are used in Ref. 1, as well as in this work for systematically combining sectors.

III. Approach

Similar to the approach in Refs. 1 and 2, the objective is to reduce the number of open sector clusters
within a center with the condition that the capacity of each cluster cannot be exceeded. A cluster’s demand
over a future 15-minute interval is estimated by summing over all the sectors in the cluster the maximum
instantaneous aircraft count of each sector. For a future interval of one hour, the largest of these values over
the four future 15-minute intervals is taken to be the cluster’s future one hour demand. The cluster capacity
is conservatively estimated to be the maximum MAP value of all the sectors in the cluster. Finally, because
the future demand for a cluster is based on sums of predicted peak aircraft counts, the estimated capacity

aEnhanced Traffic Management System: A software tool used by controllers to predict future traffic loads in sectors.
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of the cluster is reduced by a safety cushion known as the gap parameter which accounts for errors due to
traffic prediction uncertainties.

III.A. The Mixed Integer Linear Programming Model

While both the objective and constraints of this problem are simple, implementing a technique to find the
optimal solution is not. One difficulty lies in the size of the solution space. For instance, with as few as
ten sectors, the number of possible cluster arrangements is nearly 116,000.5 Although in reality, spatial
contiguity would preclude many of these sector combinations from consideration, it is clear that solving the
problem is not trivial due to the combinatorial size of the solution space which grows exponentially with the
number of sectors. The greedy heuristic approach described in Ref. 1 is very efficient, but, as demonstrated
herein, occasionally misses the optimal solution. On the other hand, the Mixed Integer Linear Program
method promises optimality, but has its own complications.

Posing the clustering problem as a Mixed Integer Linear Programming (MILP) model that captures any
feasible cluster’s capacity and demand is not straightforward. The inspiration for this model comes from the
optimal sector design method discussed in Refs. 6 and 7. This method makes use of a network flow model
in which the sectors (nodes) are clustered by a connection (flow) variable passed between them. Connection
flow is an abstract variable that is used to cluster sectors as it captures and sums up an attribute within
them. Each sector is considered either a flow source or sink. In this model, the connection flow variable
accumulates the cluster’s demand by capturing the maximum number of predicted aircraft in a sector over
a discrete time step interval and passing it from one sector to another, forming a sector cluster. Exactly one
sector in the cluster must become a sink sector to absorb and terminate the flow. In this way, clusters are
formed from the contiguous collection of sectors through which the flow is made to traverse, and the total
predicted aircraft in a cluster is captured by the quantity of flow absorbed by the cluster’s sink sector.

Sector traffic demands are predicted in terms of the maximum number of aircraft in a future 15-minute
interval, so the maximum total demand of a given cluster of sectors must be computed accordingly. The
predicted maximum peak aircraft count in a cluster over a 15-minute interval is the sum of the maximum
peak counts of each sector in the cluster for this interval. Thus, if a sector cluster is to be operational for
one hour, the greatest of these values over the four future 15-minute intervals yields the predicted maximum
cluster demand over the next hour.

Figure 2 depicts a simplified example where only one time step is considered and only a subset of the
sectors of Cleveland Center are considered. In figure 2(a) the estimated demand and capacity (MAP) values
are shown for each sector along with all the possible flow paths between them. A viable cluster solution is
depicted in figure 2(b). The details of the individual flow variables fk

ij will be discussed in the next section.
Note that the flow leaving sector 2 is equal to the flow going into sector 2 plus the traffic demand of sector
2. This flow path is then terminated in sector 4, which was selected to be the sink of that 3-sector cluster.
Sectors 1 and 2 are source sectors. Clusters are identified by the index of their sink sector. Here the cluster
demand is determined as the sum of the flow going into sector 4 plus the demand of sector 4 itself. Note
that sink sectors also behave like source sectors in that they also contribute to the flow variable, but sink
sectors, unlike source sectors, terminate flow by not permitting outward flow. Finally, the cluster capacity
is set to the maximum MAP value of the cluster’s sectors.

It must be stressed that there is no real-world meaning or implication to which sector in the cluster
becomes a sink. Any sector is free to become a sink, because it must be possible to form “clusters” consisting
of only one sector. The sink assignment is determined at run time not a priori. Furthermore, the concept of
connection flow has no physical meaning in this formulation. That is, the path in which it is made to traverse
has no relation to the direction traffic flows. In fact, in this setting it is fair to consider flow variables to be
links that carry with them the predicted demand of each sector as they form an ordered set of sectors. The
specific order of the sectors in a cluster as determined by these links is ultimately irrelevant. The primary
advantage of this method is that contiguity of a sector cluster is guaranteed because it is easy to prevent flow
(links) between non-adjacent sectors from being established. Contiguity is not a trivial constraint to enforce
with other clustering methods. Here, it is inherent to the model structure. Also, by using the flow variable
to sum up the traffic demand of the sectors in the cluster, the total cluster demand is easily captured, and
circular flow path cycles are prevented because a conservation of flow in and out of each sector is enforced.
The next section will detail how this model is implemented mathematically through MILP model decision
variables and constraints.
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(a) Unsolved set of connection flow variables fk
ij .
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(b) Clustered solution of flow variables and sink locations.
Only non-zero values shown. Sink sectors indicated with red
dot.

Figure 2. A notion of the network flow clustering model. Note the unsolved variables fk
ij which when solved along with

a sink location forms 2 sector clusters.

III.B. The MILP Model Formulation

Given N sectors considered for possible clustering, I = {1...N} is the set of sector indices, and T = {1, 2, 3, 4}
is the set of discrete time steps for the four future 15-minute time intervals of the next hour, the MILP model
parameters, decision variables, objective function, and constraints are now presented. Here, i, j, k ∈ I, and
t ∈ T. Although indices i, j, and k all span the same set of sectors, index k is associated with the cluster

index which is equal to the index of that cluster’s sink sector. Recall that any sector is capable of becoming a
sink for its cluster’s connection flow, but many sectors will not become sinks. Thus, variables with k indices
of non-sink sectors must be constrained to be zero-valued because they represent variables associated with
non-existent clusters.

III.B.1. Model Parameters

The model parameters that are known a priori are

ACit - the number of aircraft predicted to be in sector i at time step t,

MAPi - the Monitor Alert Parameter for sector i,

nij ∈ {0, 1} - if sector i is a spatial neighbor of sector j, nij = 1, otherwise nij = 0, and

gapi ≥ 0 - the gap parameter, a safety cushion on the predicted demand of a sector. This is usually identical
for all sectors i ∈ I, but may be individually altered for specific sector capacity violations.

III.B.2. Model Decision Variables

Decision variables are those that are not known a priori and are solved by the optimizing software at run
time. The basic set of decision variables is

fk
ij ∈ Z

+ - the flow of accumulated predicted aircraft count at time step t = 1 going from sector i to sector
j and ultimately terminating at sink sector (cluster index) k,

xik ∈ {0, 1} - if sector i is assigned to cluster k, xik = 1, otherwise xik = 0,

dkt ∈ Z
+ - the total air traffic demand of cluster k at time step t,
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Dk ∈ Z
+ - the maximum demand of cluster k over all time steps t ∈ T,

Ck ∈ Z
+ - the capacity of sector cluster k, and

yi ∈ {0, 1} - if sector i becomes a sink, yi = 1, otherwise yi = 0.

III.B.3. Objective Function and Constraints

The objective is to minimize the number of sector clusters, or in model terms, minimize the number of sectors
that become sinks. Thus, the objective function is simply

minimize
∑

i∈I

yi. (1)

The primary constraint of preventing the traffic demand of each cluster from surpassing its capacity less the
gap parameter is enforced by:

Dk ≤ Ck − yk · gapk ∀k ∈ I (2)

The difficulty lies in implementing constraints that capture values for Dk and Ck. Implicit in these values
is the assignment of sectors to clusters which requires determining values for xik. This, in turn, requires
clustering the sectors according to the flow connection variables that are determined through the following
constraints:

∑

j∈I

fk
ij =

∑

j∈I

fk
ji + xik · ACi1 ∀i, k ∈ I| i 6= k (3)

dk1 =
∑

j∈I

fk
jk + xkk · ACk1 ∀k ∈ I (4)

∑

t∈T

dkt

L
≤ yk ∀k ∈ I (5)

Constraint (3) sets up the conservation of flow among all source (non-sink) sectors. Considering flow
heading to sink sector k (or, cluster k), the total flow out of sector i into all other sectors j must equal
the total flow into sector i from all other sectors plus the number of predicted aircraft in sector i at time
step t = 1. Note that the connection flow variable is based on traffic flow predicted for the first time step
horizon ACi1. This is because the flow only needs to operate on one additive sector attribute; the choice is
arbitrary. The traffic demand for the remaining time steps is taken into consideration using an additional
relation discussed below. Also, note that the assignment variables xik are used as a filter so that the flow
variables for sectors i that are not assigned to cluster k are zero.

Constraint (4) is similar to constraint (3), but is specific for sectors that become sinks. Each sink sector
k absorbs the flow heading to itself—there is no out-going flow. Thus, the demand variable dk1 is equal to
the total flow into sector k based on traffic predictions for time t = 1 plus the number of predicted aircraft
in sector k itself at time t = 1. This is the mechanism by which the total number of predicted aircraft in a
cluster of sectors is captured. Again, refer to figure 2 for a depiction of this.

Because k spans all sectors I (since all sectors are possible sinks), dkt must be zero for all non-sink sectors.
This is accomplished by constraint (5). Here, and throughout the remainder of this section, L represents an
arbitrary number sufficiently large enough to prevent the quotient on the left from being greater than one.
Constraints of this form force the non-binary variable on the left to be zero when the binary variable on the
right is zero, but if the binary variable is equal to one, the non-binary variable can be any value greater or
equal to zero.

The next constraints define the relations between the connection flow variables fk
ij , the sector-cluster

assignment variables xik, and the sector-sink variables yk.
∑

k∈I

xik = 1 ∀i ∈ I (6)

∑

j∈I

fk
ij

L
≤ xik ∀i, k ∈ I (7)

xkk = yk ∀k ∈ I (8)
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Constraint (6) forces every sector i to be assigned to exactly one cluster k. Constraint (7) is what relates
the connection flow variable to an actual sector-cluster assignment. Each sector i is assigned to the same
cluster k as the flow that leaves it. Because flow does not leave sink sectors, constraint (8) is necessary to
define sectors assigned to themselves as sinks.

One of the primary reasons for using the network connection flow technique is that the contiguity of the
clusters is guaranteed through the following simple constraint:

∑

k∈I

fk
ij

L
≤ nij ∀i, j ∈ I (9)

Constraint (9) restricts all flow from sector i from going into non-neighboring sectors as defined by the nij

parameters. Thus, only sectors that are spatially contiguous may be clustered.
In addition to enforcing contiguity, the connection flow technique also yields cluster traffic demand for

the first time step dk1 in constraint (4). Using the sector-cluster assignment variables xik, the remainder of
the cluster demand variables dkt for t > 1 can be related through the following equation:

dkt =
∑

i∈I

xik · ACit ∀k ∈ I, t ∈ T| t > 1 (10)

Here, the xik variables serve as a filter in (10) so that the traffic demands of every cluster for the remaining
time steps are the sum of predicted aircraft counts in only those sectors belonging to cluster k.

Finally, the cluster demand and capacity variables are given by:

Dk = max
t∈T

{dkt} ∀k ∈ I (11)

Ck = max
i

{xik · MAPi} ∀k ∈ I (12)

Thus, constraint (2) can be realized. Recall that since k spans all sectors, for values of k involving non-sink
sectors Dk, Ck, and yk are zero so constraint (2) is never violated. Since constraints (11) and (12) invoke the
max operator which is nonlinear they cannot be directly implemented. Fortunately, this is overcome with
some additional constraints and variables discussed in the following section.

III.B.4. Linearizing Max Constraints

The technique for linearizing a max operator is well known, but will be presented here for thoroughness.
Instead of implementing constraints (11) and (12) directly, each one is replaced by three linear constraints
and the addition of a set of binary decision variables. Introducing akt ∈ {0, 1}, constraint (11) is enforced
with the following:

Dk ≥ dkt ∀k ∈ I, t ∈ T (11a)

Dk − dkt

L
≤ 1 − akt ∀k ∈ I, t ∈ T (11b)

∑

t∈T

akt = 1 ∀k ∈ I (11c)

The strategy is that constraint (11a) bounds Dk on the bottom by the largest value of dkt. Then constraint
(11b) prevents Dk from being any larger than maxt{dkt} by ensuring that the difference between Dk and
dkt is zero at least once since, by constraint (11c), for every k, akt = 1 exactly once across the t domain.

Likewise, with bik ∈ {0, 1}, nonlinear constraint (12) is implemented by the following linear constraints:

Ck ≥ xik · MAPi ∀i, k ∈ I (12a)

Ck − xik · MAPi

L
≤ 1 − bik ∀i, k ∈ I (12b)

∑

i∈I

bik = 1 ∀k ∈ I (12c)

Once again, L is a number large enough to prevent the quotient from being greater than 1.
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III.C. Model Discussion

Given the above mathematical formulation, some observations are made about this MILP model. Referring
again to figure 2, it is clear that the same cluster solution could be produced from different sink assignments
as well as different flow arrangements. There are three possible sink locations for the top cluster, but there
are also three different possible flow path arrangements for every possible sink location. (For example, flow
could go from sector 2 to sector 1, then into sector 4 with f4

21
= 3, and f4

14
= 8.) Coupled with the two

possible sink choices for the lower cluster (with only one flow arrangement possible for each), there are
exactly eighteen unique MILP model solutions that produce the exact same sector clustering arrangement
shown.

Furthermore, depending on traffic demand and sector capacity, there may be more than one feasible
cluster arrangement that satisfies constraints and results in the fewest number of clusters. Even the greedy
heuristic approach could, in theory, produce alternate clustering solutions having the same number of clusters.
After all, it is only the number of clusters that matters to the objective function of both methods, not the
specific arrangement. The optimal MILP model, however, can produce exponentially more internal variable
specific solutions (distinguished only by flow and sink variables) than the greedy heuristic approach that
result in the same number of clusters. Thus, the network flow model adds a significant level of complexity
that can lead to lengthy computation times. This will be discussed in greater detail in Section V. The
implementation of the model in simulation is presented next.

IV. Implementation

Based on historical flight data, the Future ATM Concepts Evaluation Tool (FACET)8 is used to record
the sector traffic loading of a center. In practice only predicted traffic can be used to make decisions on sector
combining, but for the simulations herein, actual traffic loads are used for the four 15-minute look-ahead
time steps. Thus, given a specific center, data for ACit is recorded for each sector i at four time steps for
each hour.

For every sector i in the center, its MAP value MAPi, as well as its set of spatial neighbors nij is
determined. The default gap parameter is set at three, so gapi = 3 ∀i ∈ I, except for the case when traffic
in an individual sector violates the capacity constraint. Thus, if for some sector i the peak traffic in the
next hour ACit exceeds MAPi − 3, the gap parameter for that sector is lowered so that constraint (2) can
be met. This is necessary because without it, the MILP model is infeasible. By reducing gapi to the point
that constraint (2) is just barely met means that the sector in question will not be combined with any other
sector, and will become a cluster of one. Recall that the intent of the gap parameter is to be a cushion for
traffic prediction error. Once the model parameters are captured from FACET, the model is solved using
either the open-source GNU Linear Programming Kit (GLPK)9 optimization package, or the commercial
AMPL/CPLEX10 package.

V. Results

For these simulations, historical flight data from 8 February 2007 in Cleveland Center are used to compare
the performance of the optimal MILP sector combining method to that of the greedy algorithm method.
Only high sectors are considered for combining. In the first scenario, sectors are only permitted to combine
with those in the same area of specialization. This is known as the restricted case, and the total number
of resulting high-sector clusters are shown in figure 3(a) for each hour over a 24-hour period. There are 27
high-altitude sectors in this center grouped into eight areas of specialization. This means that at each time
step eight separate optimal solutions are found—one for each area of specialization.

The results demonstrate that the greedy algorithm produces near-optimal results. The MILP model
provides, at most, an improvement of one less cluster for some time steps. However, given the relatively
small size of each area, it is not surprising that improvements are modest. Nevertheless, over the course of
this day, a savings of seven sector-hours is realized. (A sector-hour refers to one sector, or cluster of combined
sectors operational for one hour.) Over several weeks, this savings adds up and becomes significant.

As the number of sectors considered for combining increases, intuition suggests that because the solution
space increases exponentially, the greedy algorithm is more likely to miss the optimal combined sector
solution. This assumption is validated by testing the performance of both methods, while allowing all the
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tion.

Figure 3. Total number of high sector clusters produced by the optimal MILP method compared to the greedy algorithm

method. Based on traffic data for 8 February 2007 in Cleveland Center.

high sectors to combine without regard to their areas of specialization. This is known as the unrestricted

case, and the results are shown in figure 3(b). The same traffic data from Cleveland Center is used and
all 27 sectors are allowed to combine without restriction. Here, the difference between the two methods is
much more dramatic with a total improvement of 34 sector-hours for the day. In figure 4 the MILP results
for 0:00 – 1:00 EST are shown. It is easy to see by the size and convoluted arrangement of the clusters
why such unrestricted combinations are not performed in current operations. Nevertheless, the unrestricted
scenario is a rigorous test of the performance of both methods’ ability to handle greater numbers of sectors
for combining. This will be important if the areas of specialization are enlarged, as would be possible among
generic sectors. Also, while it is not investigated here, both methods could benefit by selecting solutions
from a pool of optimal or near-optimal solutions according to additional criteria.

Figure 4. An example of unrestricted cluster results pro-

duced by the optimal MILP for 0:00 – 1:00 EST consisting

of 4 sector clusters.

The tendency of the greedy algorithm to not only
miss the optimal solution, but to produce incon-
sistent results depending on the input data is best
demonstrated by the results at 11:00 – 12:00 EST.
Here, note that in figure 3(a) the greedy algorithm
produces a result of 21 sector clusters whereas in
the unrestricted case, where the number of clusters
should obviously be no greater than the restricted
case, figure 3(b) shows it produces a solution of 22
sector clusters. Because the optimal MILP method
is not subject to these types of inconsistencies, the
unrestricted case always has equal or fewer sector
clusters than the restricted one.

These results focus on the resulting number of
clusters that each method produces, not the cluster
arrangement themselves. It should be noted, that
when the two methods produce the same number
of clusters at a given time step, the clusters may or
may not be identical. As discussed above, there may
be more than one possible cluster arrangement depending on traffic conditions. Some arrangements may be
more operationally practical than others, but no attempt to analyze them has been made here.
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V.A. Computation Time

Though the MILP model is capable of finding the optimal solution to the sector combining problem, the
computation times can be significant. For the restricted case when the size of the problem is limited to the
number of sectors in an area of specialization (the largest of which contains six sectors), solution times range
in the tens of seconds using the open-source GLPK package. When the number of sectors considered for
clustering is increased to all 27 high sectors solution times for each time step are often measured in hours
using the commercial (and computationally efficient) AMPL/CPLEX package. In practice, this would render
the method useless, but fortunately the greedy algorithm (with computation times less than a minute) can
be used to provide a starting solution for the optimal solver, thus dramatically reducing solution times. In
fact, this technique was used for the unrestricted simulation case shown above. If time does not permit the
exact optimal solution to be found, the solver will usually find a superior (if not optimal) solution within
several minutes.

VI. Conclusions

This paper describes a method of optimally combining sectors into clusters according to traffic demand
and capacity. The results demonstrate that the existing greedy algorithm is very efficient for quickly de-
termining a near-optimal solution to the sector combining problem; as long as the problem size is small, it
finds the optimal solution most of the time. With a small number of sectors, the improvement offered by
the optimal MILP model is slight. However this improvement becomes significant over time.

When dealing with a large number of sectors, the optimal MILP model demonstrates a significant and
consistent improvement over the greedy algorithm. However, this comes with the cost of exponentially
increasing computation times. This is addressed by using the greedy algorithm to provide an initial solution
for the optimal model, which drastically reduces computation times. Doing so allows the optimization
software to find improved solutions in matters of minutes as opposed to hours.

While the optimal MILP model shows promise for improving a center’s workload efficiency, unlike the
greedy algorithm, it is not capable of handling nonlinear or non-additive sector workload metrics. An active
area of research is investigating methods of more accurately estimating sector capacity and workload. Unlike
the conservative methods used in this optimal MILP model and the existing greedy algorithm, many of
the proposed methods (like Dynamic Density) involve nonlinear and/or non-additive metrics. Such metrics
are difficult, if not impossible, to incorporate into the MILP domain. Research is needed to evaluate the
accuracy of these alternative metrics, and to determine the extent of improvement they offer over the basic
metrics of aircraft count and MAP when used in sector combining methods. While it may be impossible
to directly apply these metrics to the MILP model, it is certainly possible to evaluate the many optimal or
near-optimal solutions the MILP model produces according to any number of additional constraints. The
desirable solution could then be selected accordingly.

Nevertheless, this optimal MILP model may be a useful tool for suggesting sector combinations in both
present and future operations. Also, if future concepts like generic sectors are adopted, it may be feasible to
combine larger sets of sectors without area of specialization restrictions. In such case, the optimal MILP is
especially useful for determining the minimum feasible number of clusters given traffic predictions and sector
capacity.
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