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This paper discusses a novel approach to associate and re�ne aircraft track data from
multiple radar sites. The approach provides enhanced aircraft track accuracy and time
synchronization that is compatible with modern air tra�c management analysis and sim-
ulation tools. Unlike existing approaches where the number of aircraft in the radar data
must be assumed, this approach requires no such prior knowledge. While commercial air-
craft provide ID tags captured in the radar data in the form of Mode 3 transponder codes,
general aviation often lacks such transponders, which precludes using the number of codes
sensed to count the number of aircraft in the data. To meet this challenge, an approach to
track an unknown number of unidenti�ed aircraft using a clustering algorithm is proposed.
The paper presents a method to relate aircraft between consecutive time frames and re�ne
the trajectories of those vehicles. Experimental results from evaluating the algorithm and
demonstrating its viability are provided.

Nomenclature

�L Standard deviation for edge lengths [nmi]
�h Maximum allowable di�erence between headings of two aircraft [�]
�p Maximum allowable distance between the real position and the expected position of an aircraft [nmi]
di Length of the ith edge in a spanning tree [nmi]
Lmax Maximum distance in a cluster [nmi]
mL Average of edge lengths [nmi]

I. Introduction

Unmanned Aerial Vehicle (UAV) tra�c in the National Airspace System (NAS) is expected to grow and
needs to be accommodated.1 Currently, special permission is required to operate UAVs in the NAS, and

studies are under way to plan and assess their safe operation in an environment of commercial and general
aviation. Accurate air tra�c data is required to support these studies. The need is to correlate and aggregate
the data from multiple radar sites that cover the airspace of interest. These data may be consolidated in two
ways { the data have to be properly associated with each aircraft in an environment where their number is
arbitrary, and aircraft tracks need to be posted with regular time interval separation.

To address these challenges, a clustering and tracking algorithm is employed. The algorithm collects all
radar hits that appear in a time window and generates a single consolidated data set for each time step, which
is suitable for clustering algorithms. It identi�es aircraft for each time step with a clustering method based
on Minimum Spanning Tree,2 and then constructs the trajectory for each aircraft by comparing identi�ed
vehicles between two consecutive time steps.

There are various clustering methods such as k-means clustering3,4 and fuzzy c-means clustering.5,6

These two clustering algorithms and their modi�ed versions solve many clustering problems; however, they
generally require a prior knowledge of the number of clusters and are therefore de�cient since it is di�cult
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Figure 1. Three consecutive radar hits that have 12 second gaps between hits (left) and a collected
radar hits for a time window (right)

to know in advance the number of aircraft in the airspace. The clustering algorithm proposed in this paper
does not require a priori knowledge of the number of clusters. This paper has more in common with work
on multiple-target tracking . The framework proposed in Ref. 7 can track and manage identities of multiple
aircraft simultaneously using a modi�ed version of joint probabilistic data association (JPDA) algorithm;8,9

however, the main objective of research presented in Ref. 7 di�ers from the objective of this paper. While the
JPDA based algorithm focuses on tracking multiple aircraft for air tra�c controllers, the approach presented
in this paper focuses on generating aircraft tracks in regular time interval separation, which are usable by
modern air tra�c analysis and simulation tools.

This paper is organized as follows: Section II presents the clustering and tracking algorithm; Section III
describes experimental studies that evaluate the algorithm and show the tracking results with radar data;
and Section IV provides conclusions.

II. Radar Data Tracking Algorithm

Suppose that there are three consecutive radar hits detected at 0:59:48 Coordinated Universal Time
(UTC), 1:00:00 UTC, and 1:00:12 UTC respectively. These are depicted on the left hand side of Fig.1.
Looking at these radar hits, humans may recognize three aircraft relatively easily. To enable automated
tracking of each aircraft, the time window concept is employed. It is assumed that radar hits from same
aircraft are closer in a time window compared to radar hits from di�erent aircraft. Using a time window,
groups of radar hits are generated. The radar hits of each group are likely to come from the same aircraft.
For example, if the time window o�set is �15 seconds at 1:00:00, all the radar hits that have time stamp
between 0:59:45 and 1:00:15 falls into this time window as shown in the right hand side of Fig.1. Figure 1
shows three groups, one of which is located at the lower left (A), another around the center (B), and the other
at lower right (C). Each group comprises three radar hits that are very likely to represent the same aircraft.
The aircraft tracking method divides unidenti�ed radar hits within a given time window to multiple groups,
and then compares these groups with those in the next consecutive time window to determine whether
each group in the new time window is a continuation of a group in the previous time window or not. This
procedure is repeated to obtain the complete set of aircraft tracks.

A. Clustering Aircraft within a Time Window

Before presenting the clustering algorithm, the fundamentals of graph theory10 are reviewed. A graph is
de�ned as a collection of points and lines connecting subsets of these points. Points in a graph are commonly
known as vertices or nodes. Lines connecting vertices of a graph are known as edges or links. An edge-
weighted linear graph is composed of a set of nodes and a set of edges with a value assigned to each edge as
weight. A circuit is a closed path composed of a sequence of edges from a node to itself. A connected graph
has paths between any pair of nodes. A tree is a connected graph with no circuits and a spanning tree of a
connected graph G is a tree in G which contains all nodes of G.

If the weight of a tree is de�ned as the sum of weights of its edges, a minimum spanning tree (MST) of
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Figure 2. Two sample spanning trees: (a) is one among many possible spanning trees, and (b) is the
minimum spanning tree

graph G is de�ned as the spanning tree that has the minimum weight among all possible spanning trees of
G. For example, in Fig.1, let the radar hits in the time window be nodes and let all possible connections
between any two hits be edges. Figure 2 shows two possible spanning trees: (a) is one of many possible
spanning trees, and (b) is the minimum spanning tree. After �nding the minimum spanning tree,2,10 the
clustering algorithm needs to identify and delete edges connecting any two distinct groups such as edges a3b3
and b3c1 shown in Fig.2 (b). In this example, edges a3b3 and b3c1 have the weights of 14 and 16 respectively.
These weights are much larger than the weights of all the other edges, which are about one. The clustering
algorithm automatically deletes edges whose weights are larger than a given maximum permissible distance,
Lmax, and then further removes edges with weights larger than the average edge weight, mL, by more than
three times the standard deviation, �L. That is, the edge cut-o� criteria is

di > Lmax

or

di > mL + 3 � �L;

where di is the length of the ith edge. Once the MST is separated into sub-trees by trimming the long edges,
this process is repeated recursively to the resulting sub-trees until there is no abnormal edge within each
tree. After the algorithm �nds several independent trees, it labels each tree with a distinct aircraft ID, and
interpolates the position. Figure 3 describes the core clustering procedure.

B. Comparing Aircraft in Two Consecutive Time Windows

To relate a group (cluster) of newly identi�ed aircraft in a time window to the one in the consecutive time
window, the algorithm counts the number of overlapping radar hits between a cluster in the current time
window and all clusters in the next time window. This procedure requires the proper size of the time
window that is at least larger than the time spacing between two radar hits of a vehicle, since a hit should
be included in two consecutive time windows. The cluster in the next time window with the highest number
of overlapping radar hit gets the ID of the cluster in the current time window. If there is no overlapped
aircraft, the cluster gets a new unique ID. After all clusters in a time window obtain their IDs, the position
of each aircraft is calculated by interpolating the radar hits in the time window.

In addition to the overlapping radar hits, two more approaches are used to improve the comparison
ability. First, the aircraft headings in consecutive time windows are compared. If the di�erence between
headings of two aircraft is within a certain set threshold, �h, the two aircraft are classi�ed to be the same.
Otherwise, the two aircraft are classi�ed to be di�erent group even though the number overlapping radar
hits is high. Second, the expected position of an aircraft in the next time window is compared to its real
position. If the two positions are within a given threshold, �p, they are determined to be the same aircraft.
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tree queue fg
unidentified radar hits Collect radar hits in time window(entire radar hits)
edges Calculate all edge lengths(unidentified radar hits)
minimum spanning tree Kruskal method(edges)2

add minimum spanning tree to tree queue
repeat
pre num of trees Size(tree queue)
new tree queue fg
for all tree in tree queue do
mL  Calculate average of edges
�L  Calculate standard deviation of edges
for all edge in tree do

Trim edges larger than(MIN(Lmax;mL + 3�L))
end for
divided trees Get divided trees(tree)
add divided trees to new tree queue

end for
tree queue new tree queue
post num of trees Size(tree queue)

until (post num of trees� pre num of trees)� 0

Figure 3. MST-based clustering algorithm

Otherwise, they are classi�ed as di�erent aircraft. The number of overlapping radar hits is �rst checked,
then these two methods are used to verify the result. If at least one of two methods con�rms that the two
aircraft are identical, the aircraft is classi�ed to be the same.

One more challenge lies in tracking aircraft correctly when the Mode 3 transponder codes of aircraft
intermittently drop out. If the radar hit has the Mode 3 code, a clustering algorithm is not required to track
the aircraft. However, if the code is intermittently unavailable, the aircraft is assigned a new ID by the
clustering algorithm. To avoid splitting aircraft trajectories for the same aircraft, the algorithm compares
the actual position of a vehicle without the Mode 3 code in the current time window to the expected next
positions of all vehicles with the Mode 3 codes in the previous time window, and vise versa. Through this
cross-comparison routine, continuous tracks of aircraft are obtained.

III. Experimental Evaluation

The method was veri�ed using a radar data set around the Grand Forks Air Force Base, which was
provided by the Air Force. The data set included all radar hits collected from six di�erent radar sites. In
this experiment, radar hits for a single day, a total of 116,790 radar hits, were used. Around 23 percent of
these hits did not have a Mode 3 transponder codes, that is, 26,914 radar hits were unidenti�ed and required
clustering. Figure 4 depicts examples of radar hits for 24 consecutive times. This �gure shows that the
time spacing for the radar hits are irregular, and that it is di�cult to di�erentiate multiple aircraft in those
separate plots. Figure 5 shows the time window plot that includes all radar hits in Fig.4.

The current recursive MST-based method used a two-minute time window (�60 seconds from current
time) with a ten-second step time, and calculated the interpolated positions of clustered aircraft at each
time. The size of the time window should be not only large enough to collect radar hits even when there
were missing hits, but also small enough to avoid mixing the radar hits of di�erent aircraft. The size of
the time window, �60 seconds, was empirically determined after evaluating the algorithm with various time
window sizes. Typical minimum separation standards for con
ict are 5 nautical miles horizontally and 1000
feet vertically. Since horizontal motion is much greater than vertical motion, the vertical scale was adjusted
before the Euclidean distances were calculated. The vertical distance was scaled up so that vertical 1000 feet
was considered to be the same as horizontal 5 nautical miles. The minimum separation standards provide
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Figure 4. Examples of radar hits in the x-y coordinate for 24 consecutive times
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Figure 5. Time window plot that includes all radar hits in Fig.4
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a reasonable scaling factor since it should be based on maximum unexpected movements. Lmax was set to
5 nautical miles that is the typical horizontal separation distance. After clustering unidenti�ed aircraft of
all time windows, the method compared clustered aircraft in two consecutive time windows, and generated
trajectories of aircraft. �h was set to 90 �, which ensures that two groups in the consecutive time windows
head to at least the same direction. �p was set to 5 nautical miles.

A. Evaluating the Algorithm

To evaluate the MST-based clustering and tracking algorithm, trajectories of two aircraft with known Mode
3 transponder codes were considered. The Mode 3 information was not used by the algorithm. The estimated
trajectories generated by the algorithm were compared with the known trajectories to validate the algorithm.
One aircraft, the Mode 3 code of which is 4260, was randomly selected from the commercial 
ights that are

ying around FL300, and the other, the Mode 3 code of which is 307, was selected from the low altitude

ights.
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Figure 6. The trajectories of two aircraft, one of which was randomly selected from the low altitude

ights (on the left side), and the other was selected from the regular commercial 
ights 
ying around
FL300 (on the right side).
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Figure 7. The trajectories of two aircraft that the MST-based clustering algorithm regenerated from
the radar data including the radar hits of two aircraft in Fig. 6 from which the Mode 3 codes were
removed.

Figure 6 shows the original trajectory of the two aircraft, and Fig. 7 shows the trajectory that the
algorithm generated from the radar data including the radar hits from which the Mode 3 codes of two
aircraft were removed. For the commercial 
ight (Mode 3 code 4260), the algorithm perfectly regenerated
the 
ight trajectory from the unidenti�ed radar hits as shown on the right sides of Figs. 6 and 7. For the
low altitude 
ight (Mode 3 code 307), the algorithm also regenerated the 
ight trajectory almost perfectly.
As shown on the left sides of Figs. 6 and 7, only the top-right parts of the plots are slightly di�erent. Since
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there were two or three more unidenti�ed aircraft that were 
ying close to each other in this airspace, the
clustering algorithm could not track aircraft perfectly; however, the 97.8 % of data points on the original
trajectory are completely �t to the clustered trajectory. This experiment shows that the proposed clustering
and tracking algorithm can generate the aircraft tracks from unidenti�ed radar hits.

B. Executing the Algorithm for the Radar Data

The algorithm was executed for the data set that contains 116,790 radar hits. It computed 90,921 interpo-
lated aircraft positions from radar data and generated 1,029 aircraft trajectories. Table 1 summarizes the
tracking results. The estimated trajectories are classi�ed into three groups: trajectories that have Mode
3 information, trajectories that do not have Mode 3 information, and trajectories that intermittently have
Mode 3 information. Some examples are shown in Fig. 8. These results demonstrate that the MST-based
approach was able to track unidenti�ed aircraft.

Table 1. Results of clustering and tracking aircraft from radar data

Case Number of Clusters Number of Interpolated Radar Hits

Mode 3 codes on 332 31,892

Mode 3 codes o� 332 8,921

Mode 3 codes on=o� 365
27,979 (Mode 3 on)

22,129 (Mode 3 off)

Total 1,029 90,921
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Figure 8. Examples of aircraft trajectories which the MST-based clustering algorithm generated from
radar data without Mode 3 codes
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IV. Concluding Remarks

This paper describes an approach for tracking multiple unidenti�ed aircraft in radar data. The proposed
recursive MST-based clustering algorithm enables identi�cation of independent tracks as belonging to the
trajectory of an aircraft whose identity is not known. This paper also presents a three-step method to
compare clustered aircraft in two consecutive time windows to generate trajectories of aircraft, and reports
evidence that the method regenerates the aircraft trajectory from the radar hits from which the Mode 3
transponder codes were removed to make them unidenti�ed aircraft. The experimental result with the radar
data of a single day shows that the method can track unidenti�ed aircraft.

Although this method generates plausible aircraft trajectories from the radar data that contain unknown
aircraft, there is room for improvement. The method currently uses altitude information of aircraft as well
as the horizontal position information. Finding a way to consider the radar hits that do not provide altitude
information could lead to the more robust tracking algorithm. Future research also includes investigating
the sensitivity of the algorithm with respect to the distance between two neighboring aircraft.
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