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Abstract: The conflict probability estimation (CPE) pro-
cedure presented in earlier papers is tested with real air
traffic data. The CPE procedure estimates the probabil-
ity of conflict for pairs of aircraft with uncertain predicted
trajectories. In earlier papers, the CPE algorithm itself
was successfully tested by Monte Carlo simulation, but in
this paper the simplifying assumptions and the stochastic
error model on which it is based are also tested by applying
the algorithm to real air traffic data. Only level flight is
considered in this paper. The basic trajectory prediction
error statistics of the Center/Tracon Automation System
(CTAS) are computed and presented, then the CPE re-
sults are computed and categorized according to prediction
time and path crossing angle. The expected and the ac-
tual number of conflicts matched well for most categories
of predicted encounters and matched acceptably well for
all categories. The feasibility of CPE has therefore been
demonstrated.

Introduction

The economics and efficiency of air transportation in the
continental U.S. could be improved significantly if the cur-
rent routing restrictions were relaxed to allow more direct
or optimal trajectories. The current system of static jet
routes imposes structure on the en-route airspace, which
helps to maintain the safe and orderly flow of traffic, but
also forces aircraft to fly indirect, zig-zag routes. Fortu-
nately, new decision support systems are being developed
for air traffic management (ATM) that will allow safety to
be maintained without a static en-route airspace structure.
The ultimate goal is “Free Flight,” which could save the
airline industry several billion dollars per year.

The safety and efficiency of Free Flight will benefit
from automated conflict prediction and resolution advi-
sories. Conflict prediction is based on inexact trajectory
prediction, however, and is itself therefore inexact. The
farther in advance a prediction is made, the less certain
it is, particularly in the along-track direction. For better
efficiency, aircraft are usually flown at constant airspeed or
Mach number rather than constant ground-speed, and the
uncompensated effects of wind modeling and prediction er-
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rors accumulate with time. A method is needed, therefore,
to estimate the probability of conflict, where a conflict is
defined as two or more aircraft coming within the mini-
mum allowed separation distance of each other. The min-
imum allowed horizontal separation for en-route airspace
is currently 5 nmi. The vertical separation requirement
above 29,000 ft altitude (FL290) is currently 2000 ft; be-
low FL290 it is 1000 ft. Each aircraft is therefore at the
center of a conflict zone that is a vertical cylinder 10 nmi
in diameter and either 2000 or 4000 ft high.

The conflict probability estimation (CPE) procedure,
which was presented in earlier papers [1, 2], estimates the
probability of conflict for pairs of aircraft with uncertain
predicted trajectories. The trajectory prediction errors are
modeled as normally distributed (Gaussian), and the two
error covariances for an aircraft pair are combined into
a single, equivalent covariance of the position difference
or relative position. A coordinate transformation is then
used to derive an analytical solution. That solution is ex-
act for level flight, given certain reasonable assumptions,
and is approximate for non-level flight. The CPE algo-
rithm has been programmed in C++ and integrated into
the Center /Tracon Automation System (CTAS) [3], a deci-
sion support system developed at NASA Ames for air traf-
fic controllers. CTAS has been tested at several of the Air
Route Traffic Control Centers (ARTCC) operated by the
Federal Aviation Administration (FAA). The CPE soft-
ware is modular and can also be used in ATM decision
support tools other than CTAS.

In previous papers, the CPE algorithm was tested
by Monte Carlo simulation. That simulation successfully
tested the algorithm itself but not the assumptions and the
stochastic error model on which the algorithm is based. In
this paper, the algorithm, the assumptions, and the error
model are all effectively tested by applying the algorithm
to real air traffic data. Only level flight above FL290 is
considered in this paper. No accounting is done for air-
craft type or the availability of a flight management sys-
tem (FMS), nor are the parameters of the error model
calibrated based on results of this study. Also, no wind-
error cross-correlation model was used, which particularly
affects encounters with small path crossing angles. Lots
of room for improvement remains, therefore. The results
to be presented are merely intended to demonstrate the
basic feasibility of CPE rather than show its ultimate per-
formance potential.

The paper is organized as follows. First, a method



called altitude shifting is outlined, which allows a repre-
sentative air traffic data sample to be collected without
requiring any separation standards to be violated. Next,
the CTAS flight data recording is discussed. Then the data
analysis and processing procedure is described, which in-
volves the processing of the prediction data from CTAS
by three separate programs in sequence. The statistical
results are then laid out: first the raw CTAS prediction
error statistics are computed and presented, both in terms
of trajectory prediction error and conflict prediction er-
ror; then the CPE accuracy is evaluated and presented.
Finally, a conclusion is presented.

Altitude Shifting

A fundamental problem with using real air traffic data to
test the CPE algorithm is caused by the fact that con-
flicts must be resolved by the responsible human air traffic
controller. Such human intervention corrupts the statisti-
cal sample, even if the aircraft pairs for which it occurs are
discarded (as any good pollster knows, selective discarding
of samples can bias results). Because controllers obviously
cannot stop resolving conflicts, some strategy is required to
approximate a valid statistical sample. The method used
in this paper, which will be referred to as altitude shifting,
is to pretend that pairs of aircraft flying level are at the
same altitude when in fact their altitudes are separated by
at least the legally required vertical separation. In order to
focus on large commercial transport aircraft, furthermore,
only aircraft at high altitudes are considered.

Only aircraft pairs in level flight over FL290 with a
predicted altitude separation from 2000 to 5000 ft are used,
therefore, and the altitude separation is ignored. Those
pairs cannot be in actual conflict as long as they maintain
constant altitude, so controllers have no reason to inter-
vene (unless, of course, a third aircraft is involved, but
that is statistically independent of the conflict status of
the original pair). A reasonable approximation of a valid
statistical sample is thereby obtained. This entire paper is
therefore based on a two-dimensional model: violation of
the horizontal separation requirement alone is counted as
a conflict.

The implicit assumption of altitude shifting is that
horizontal winds do not vary with altitude, which is is ob-
viously not exactly true. The effect of the error in this
assumption is difficult if not impossible to determine, but
altitude shifts are limited to 5000 ft in this paper to limit
the effect. For convenience, the following terminology is
defined. The phrase “an altitude shift of xxxx ft” (or, al-
ternatively, “an xxxx-ft altitude shift”) means that aircraft
pairs with altitude separations less than xxxx ft or more
than 5000 ft have been discarded, and the remaining pairs
have been conceptually “shifted” to a common altitude.
Both a 2000-ft and a 4000-ft altitude shift will be consid-
ered in this paper. The advantages and disadvantages of
each are discussed next.

Above FL290, flight levels separated by 2000 ft are
used for nominally “opposing” traffic. For example,
FL290, FL330, FL370, and FL410 are used for traffic with
a positive easterly component of velocity, whereas FL310,
FL350, and FL390 are used for traffic with a positive west-
erly component. To simulate a sampling at the same alti-
tude, therefore, an altitude shift of 4000 ft must be used. If
an altitude shift of 2000 ft is used, approximately ten times
more samples are obtained because the traffic tends to be
going in opposite directions, but large-angle encounters are
overrepresented. The statistical samples are still perfectly
good for testing the CPE algorithm, but they are not rep-
resentative of the types of encounters that controllers see in
practice. Rather than simply discarding the large number
of samples obtained with a 2000-ft altitude shift, results
are presented in this paper separately for both the 2000-ft
and the 4000-ft altitude shifts.

Although the CPE algorithm applies to non-level
flight, it would much more difficult to test for non-level
flight because controllers are forced to be more conserva-
tive and to intervene in many cases for which the alti-
tude separation might already be sufficient. This unpre-
dictable intervention might corrupt the statistical sample
and would be difficult to eliminate without a large altitude
shift. Also, the simple two-dimensional model used in this
paper would not be appropriate. For those and other rea-
sons, the scope of this paper is limited to level flight.

Data Recording

The CTAS Trajectory Synthesizer predicts aircraft trajec-
tories, then the Conflict Probe determines whether any
aircraft will come into conflict if no controller intervenes.
Trajectory prediction involves complex dynamic modeling
based on current estimated position and velocity, flight
plan, and predicted winds aloft. It is inexact, primarily
because of wind modeling and prediction error and secon-
darily because of tracking, navigation and control error.
The positions and velocities are currently based on radar
tracking, and are provided, along with the flight plans, by
the FAA at their ARTCC facilities. The wind predictions
are provided by the Rapid Update Cycle (RUC), a weather
prediction system operated by the National Center for En-
vironmental Prediction (NCEP) for the National Oceanic
and Atmospheric Administration (NOAA).

The CPE algorithm requires predictions of position
and velocity for pairs of aircraft at their points of mini-
mum separation, and an estimate of the position predic-
tion error covariances at those points. Although the CPE
algorithm currently runs in real time in CTAS, the sta-
tistical testing was done by post-processing data recorded
with CTAS. The CTAS user can interactively adjust sev-
eral parameters, such as the prediction time range and the
criteria for data recording. A data record will be recorded
only if the aircraft pair is predicted to come within the
horizontal and vertical separation criteria selected by the



user. The data records are recorded in an ASCII data file
at a rate of one every 6 s for each aircraft pair that meets
the criteria.

The raw tracking and flight plan data used for this pa-
per came from the host computer at Denver Center (ZDV
ARTCQC) through a direct line to NASA Ames Research
Center. That raw data was fed into CTAS to produce the
prediction data. CTAS was configured to record data for
level flight only, for minimum predicted horizontal sepa-
rations up to 10 nmi, and for altitude separations up to
5000 ft. The data recording was typically started in the
morning and stopped in the afternoon of the same day, for
a total recording time of approximately six to eight hours
each day. The resulting CTAS output file for each day was
typically on the order of 50-100 MB in size. The data are
recorded for each aircraft pair approximately once per 6 s.
Each data record corresponds to a single aircraft pair at
single point in time, and includes the following fields:

e aircraft identifications

e current time

e current positions/altitudes

o current ground-speeds/headings

e indication whether on or off flight plan

e predicted time of minimum separation

e predicted minimum horizontal separation

o predicted positions/altitudes at min separation
e predicted ground-speeds/headings at min sep.

o predicted times of top of ascent/descent

The aircraft are determined by CTAS to be on their
flight plans if they are within 8 nmi (cross-track) of the
planned flight-path, otherwise they are considered off their
flight plans. These prediction data are the basic inputs to
the CPE algorithm.

Data Processing

To test the acuracy of the CPE algorithm, the data are
categorized according to specified parameters, then the ex-
pected conflict rate is compared to the actual conflict rate
for each category. The primary categorization parameters
are prediction time, path crossing angle, and computed
conflict probability. The expected conflict rate is simply
the average of the computed conflict probabilities for each
category. If N is the number of prediction data records
in a particular category, the expected and actual conflict
rates are
P = Y'p;/N

C =Yic;/N

where p; is the computed conflict probability for record i
(0-1) and ¢; is conflict boolean for record 4 (0 or 1). The

error or difference between the expected and actual conflict
rates is then
E=C-P

Although the processing could have been done in a
single step, it has been divided into three steps so that pa-
rameters can be varied without having to rerun the com-
putations that are independent of those parameters. The
three processing steps will be referred to as indexing, ac-
cumulation, and tabulation. Each step is implemented as
a program written in C++ and run on a Sun workstation,
and the output file from each program (except the last)
is the input file for the next. All data files are in ASCII
format. These programs are explained in the following
subsections.

Indexing

The indexing program simply reads each record in the
CTAS output data file, filters out those records for which
the predicted altitude separation (at minimum horizontal
separation) is less than 2000 ft, and writes the remaining
records out to another file with an aircraft pair index ap-
pended to the end of each record. The indexing program
is computationally intensive because it requires the con-
struction of an aircraft pair list and, for each data record,
searching through the list to find the matching aircraft
pair. For the quantity of data used in this paper it takes
approximately 80 minutes to run on a Sun Ultra 1. It needs
to be done only once, however, and it greatly reduces the
searching required in the next processing step, accumula-
tion. Because the accumulation program may have to be
run many times with different parameters to calibrate the
error model (and to develop the software), this improved
efficiency is important.

Accumulation

The accumulation program reads the files produced by the
indexing program, accumulates a data summary for each
aircraft pair, and writes the summaries to an output file.
It also filters the data to eliminate any remaining cases
of non-level flight, altitude separations less than 2000 ft,
encounters involving aircraft off their flight plan, and other
deviant cases. The accumulation program is a two-pass
procedure and, for the quantity of data used in this paper,
takes approximately 40 minutes to run on a Sun Ultra 1.
In the first pass, the input file is read from start to fin-
ish and several values are accumulated and stored for each
aircraft pair. These values include a count of the number of
data records for each pair and the minimum and maximum
excursions of the predicted and actual heading, speed, and
altitude. More importantly, the “truth” reference state at
the point of minimum separation is determined by reading
through the data to find the record in which the current
time is closest to the predicted time of minimum separa-
tion (but not past it). At that time, the prediction time



is so short that the positions, velocities, path angle and
separation can be read and stored as the “truth” reference
state at minimum separation.

In the second pass of the accumulation program, the
data is read again from start to finish and each data record
is tested and discarded if 1) the current time or the pre-
dicted time of minimum separation is before top of ascent
or after top of descent, or 2) the current altitude is more
than 1000 ft away from the true altitude at minimum sep-
aration, or 3) the path crossing angle is less than 15 deg.
The first condition eliminates encounters involving one or
both aircraft in ascent or descent, and the second condi-
tion eliminates encounters for which an unplanned altitude
maneuver may have occurred. The third condition elimi-
nates aircraft pairs with small path crossing angles, which
are know to be difficult cases for CPE. Fortunately, for air-
craft pairs with small path crossing angles, the encounters
develop so slowly that CPE is not as important.

Each data record that passes through the filter then
has its horizontal conflict probability computed based on
the legal requirement of 5 nmi horizontal separation. The
total prediction time range of 25 min is divided into 25
intervals of 1 min each, and an array of 25 elements is
set up to accumulate the conflict probabilities for each in-
terval. The computed conflict probability for each data
record is summed into the appropriate element of the ar-
ray, depending on the time to minimum separation. That
conflict probability sum is the statistically expected num-
ber of conflicts for that interval. A second array of the
same size is used to keep track of the number of records
for each time interval so that the average conflict proba-
bility for each interval can be determined. A third array
keeps track of how many records in each time interval pre-
dict a conflict (based on the 5 nmi horizontal separation
criterion).

The output of the accumulation program is an ASCII
data file with a one-line summary record for each aircraft
pair. That record includes the following fields:

e aircraft identifications

total number of data records

path crossing angle at minimum separation

e minimum horizontal separation

altitude separation at minimum separation
e data for each prediction time interval
where the data for each time interval includes:

e number of prediction data records
e number of records that predict conflict

e sum of computed conflict probabilities

Tabulation

The tabulation program reads the files produced by the
accumulation program, sorts the data, and tabulates the

results. For the quantity of data used in this paper, it
takes only a few seconds to run. The predicted encounters
are categorized according to three main parameters: pre-
diction time, path crossing angle, and estimated conflict
probability. For each category, the results are summarized
in a single line of a tabular output format to be explained
in the Results section to follow.

This categorization is necessary to properly test the
algorithm. Without such categorization, it is possible that
the conflict probabilities could be greatly overestimated
for some types of encounters and greatly underestimated
for others in such a way that the errors cancel and appear
reasonable overall. Categorization of the results therefore
minimizes the chances of mistakenly optimistic interpreta-
tions of the results. It is also potentially useful for cali-
bration of the Gaussian error model, but that will not be
pursued in this paper.

Results

CTAS prediction data was collected on over 9500 aircraft
pairs over periods of six to eight hours on each of approx-
imately 16 days at Denver Center (ZDV ARTCC). Data
was recorded only for aircraft in level flight over FL290
and on their flight plan. The CPE procedure was tested
only on aircraft pairs with path crossing angles of 15 deg
or more.

This section is divided into two subsections. In the
first subsection, the raw CTAS prediction error statistics
are computed and presented, first in terms of trajectory
prediction error, then in terms of conflict prediction error.
In the second subsection the CPE accuracy is evaluated
and presented.

Prediction Error Statistics

A prediction time range of 20 minutes was divided into
20 intervals of one minute each, and for each interval the
mean, standard deviation, and rms position prediction er-
rors were computed for the along-track and cross-track di-
rections. The cross-correlations between the along-track
and cross-track errors in each interval were also computed
and found to be small, demonstrating that the principle
axes are indeed the along-track and cross-track axes, as
modeled. The mean errors were small compared to the
rms errors, hence the standard deviations and rms values
are virtually identical. The rms errors are plotted in Fig.
1. Also shown is the line that best fits the along-track rms
error and the parabola that best fits the cross-track rms
error.

The linear fit of the along-track rms error starts at
0.333 nmi for zero prediction time and increases at a rate of
0.223 nmi/min. These values are very close to the values of
0.25 nmi and 0.25 nmi/min, respectively, that were used in
the prediction error model. The cross-track rms error was
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Figure 2: Position prediction error distribution

modeled as leveling off at approximately 2 nmi beyond 10
min, but it continued to increase to approximately 4 nmi at
20 min. For aircraft equipped with an FMS; the cross-track
error would be significantly less, but such aircraft cannot
be identified with the current form of the data records (this
could change in the future).

The distributions of the errors were also computed
and are plotted in Fig. 2 for one-minute increments of pre-
diction time ending at 5, 10, 15, and 20 minutes. Empiri-
cal distributions must be approximated with discrete bins,
and a bin size of 0.5 nmi was used here, hence the distri-
bution curves are shown in steps of that size (to preserve
the raw empirical form of the results rather than distort
them for a smoother appearance). The best-fit normal
(Gaussian) distribution curves are superimposed for refer-
ence. The remarkable closeness of the empirical results to
normal distributions corroborates the choice of a normally
distributed error model for the CPE algorithm.

The final prediction error statistics considered are the
missed and false conflict alert rates. Recall that each pre-
diction data record corresponds to one aircraft pair at one

point in time and predicts the minimum separation of that
aircraft pair. Conflicts and predicted conflicts are defined
here simply in terms of the legal horizontal separation re-
quirement of 5 nmi (with altitude separation ignored). If
the predicted minimum separation is less than 5 nmi, that
record is considered a predicted conflict, and if the corre-
sponding actual minimum separation is less than 5 nmi,
the record is considered to correspond to an actual con-
flict. The missed alert rate is the percentage of records
that correspond to actual conflicts but were not predicted
conflicts, and the false alert rate is the percentage of pre-
dicted conflicts that did not correspond to actual conflicts.

In practice, controllers can easily decrease the missed
alert rate by using a separation alerting criterion greater
than 5 nmi, but that will also increase the false alert rate.
Hence, the results to follow are for reference only and are
not intended to represent what controllers actually see in
practice using CTAS (see [4] for those results). Note also
that the missed and false alert rates are are only mean-
ingful if the sample space is representative of the types of
encounters controllers will see in practice, hence the 2000-
ft altitude shift is not appropriate because large-angle en-
counters are overrepresented. Hence, only the 4000-ft alti-
tude shift is used here (see the “Altitude Shifting” section
for an explanation).

Figure 3 shows the missed and false alert rates cate-
gorized by prediction time in intervals of 5 minutes. Both
rates increase with increasing prediction time, as expected,
because predictions further into the future are obviously
more difficult. Figure 4 shows the missed and false alert
rates categorized by path crossing angle in arcs of 30 deg.
Both rates increase with decreasing angle, again as ex-
pected, primarily because relative position error is more
sensitive to relative velocity error for small path crossing
angles. Figure 5 shows the missed and false alert rates cat-
egorized by estimated conflict probability in bins of 20 per-
cent. Both rates start very high for low probabilities and
decrease to very low values for high probability. The high
missed alert rate for low conflict probabilities is not sur-
prising, because the predicted minimum separation must
be high for the conflict probability to be low. Note, how-
ever, that this high missed alert rate applies only to a very
small number of actual conflicts in this low-probability cat-
egory.

Figures 3-5 must be interpreted very carefully. As
explained earlier, they are for reference only and are not
intended to represent what controllers will actually see in
practice using CTAS. Controllers can trade missed alerts
for false alerts by simply adjusting their separation alerting
threshold or their conflict probability alerting threshold.
Typically, they want a low false alert rate for strategic,
long-term predictions and a low missed alert rate for tac-
tical, short-term predictions, so the alerting threshold can
be a function of prediction time. The high missed and
false alert rates shown in Figures 3-5 are not the fault of
CTAS but are rather an unavoidable consequense of cur-
rent practices in flight control and the state of the art in
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wind modeling and prediction. In fact, these results illus-
trate the need for CPE.

CPE Accuracy

The results to be presented in this subsection are based on
the default normally distributed (Gaussian) prediction er-
ror model for cruise that is currently in place in CTAS: the
along-track rms error starts at 0.25 nmi and grows at 0.25
nmi/min; the cross-track rms error is 2 nmi. No account-
ing is done for aircraft type or for the availability of an
FMS, and no effort was made to calibrate the parameters
of the error model based on results of this study. Also, no
wind-error cross-correlation model was used, which partic-
ularly affects encounters with a small path crossing angle.
Lots of room for improvement remains, therefore. The
results presented are merely intended to demonstrate the
basic feasibility of CPE rather than to show its ultimate
performance potential.

The main results are presented in Tables 1 and 2 for
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the 2000-ft and 4000-ft altitude shifts, respectively (see the
“Altitude Shifting” section for an explanation). Each line
in each table corresponds to a particular category of pre-
dicted encounter. The first three columns of each table
specify the ranges of prediction time, path crossing an-
gle, and estimated conflict probability, respectively. These
three columns specify the category of predicted encounter.
The fourth column of each table gives the number of air-
craft pairs sampled in the corresponding category.

A brief explanation of the numbers of aircraft pairs in
the fourth column will help prevent confusion. The num-
ber of pairs for the shortest prediction time interval (not
shown) is equal to the overall number of pairs, and the
number decreases with increasing prediction time because
some aircraft pairs were not tracked, or did not adhere to
their flight plan, for the full prediction time horizon. (If
an aircraft deviates from its flight plan, all its previous
data is discarded.) When the data is sliced by path cross-
ing angle, on the other hand, the number of pairs adds
up to the overall number because each pair has a unique
path angle. However, when the data is sliced by conflict
probability, the numbers of pairs adds up to more than
the overall number because each pair can be in a different
probability bin at different times.

The seventh and eighth columns give the expected and
actual conflict rate, respectively, expressed as a percentage
of the number of prediction records (not as a percentage of
the number of aircraft pairs). The expected conflict rate
is based on the CPE results. The final column gives the
difference between the expected and actual conflict rate,
expressed as a percentage of the total number of prediction
records. This final column gives the ultimate measure of
the accuracy of the CPE procedure.

Table 1 shows selected results for the 2000-ft altitude
shift. The first line of data shows that the actual num-
ber of conflicts was within 0.5% of the expected overall
number. The next section shows the results categorized
by estimated conflict probability. The last column in this



section shows that the CPE procedure works reasonably
well, with a worst-case error of -11.5% for conflict prob-
abilities of 20-40%. The next major section (marked by
double lines) categorizes the results by path angle in in-
crements of 30 deg. The expected and actual conflict rates
match within 10% for every category except 30-60 deg, but
even there they match within 15%, even though the num-
ber of aircraft pairs is fairly small. The last major section
categorizes the results by prediction time in increments of
5 min. The expected and actual conflicts match well in all
categories except perhaps the last, where the difference is
10.4%.

Table 2 shows selected results for the 4000-ft altitude
shift. The total number of aircraft pairs is less than 1/10
of the number for the 2000-ft altitude shift because, as ex-
plained in the section on “Altitude Shifting,” the number
of pairs in high-angle encounters is much less. The first
major section shows the results categorized by estimated
conflict probability. The last column in this section shows
that the CPE procedure works reasonably well for all cat-
egories except the 20-40% range, where the error is -18.8%
for some unknown reason. The next major section cate-
gorizes the results by path angle in increments of 30 deg.
The expected and actual conflict rates match reasonably
well in most categories, given the fairly small number of
aircraft pairs, but the performance needs some improve-
ment. The last major section categorizes the results by
prediction time in increments of 5 min. The expected and
actual conflicts match reasonably well in most categories,
but again needs some improvement.

Conclusion

Conflict probability estimation (CPE) is currently used in
CTAS to determine when to notify air traffic controllers of
a potential conflict. In this paper, the feasibility of CPE
has been demonstrated, and the accuracy has been eval-
uated, for level flight using recorded air traffic data. The
expected and actual number of conflicts matched reason-
ably well for most categories of predicted encounters and
matched acceptably well for all categories, though the per-
formance could still be improved in some areas. In the
future, the stochastic error model on which the CPE al-
gorithm is based can be calibrated and refined to improve
the accuracy, particularly for small path crossing angles.
The test procedures developed for this paper will later be
applied to non-level flight. Eventually, the CPE proce-
dure will be applied to conflict resolution and will be key
to determining both when and how to optimally resolve
potential conflicts.

[1]

[2]

[3]

[4]

References

Paielli, R.A.; Erzberger, H.: “Conflict Probabil-
ity Estimation For Free Flight,” J. Guidance, Con-
trol, and Dynamics, vol. 20, no. 3, May-June
1997, pp. 588-596. See also http://george.arc.nasa.gov
/af/afa/ctas/publications/papers/paielli 05_97.pdf.

Paielli, R.A.; Erzberger, H.: “Conflict Probability
Generalized To Non-Level Flight,” submitted to Air
Traffic Control Quarterly in March, 1999.

Erzberger, H.; Davis, T.J.; Green, S.: “Design
of Center-TRACON Automation System,” AGARD
Guidance and Control Symposium on Machine Intel-
ligence in Air Traffic Management, Berlin, Germany,
May 1993. See also http://www.ctas.arc.nasa.gov.

Bilimoria, K.D.: “A Methodology for the Performance
Evaluation of a Conflict Probe,” ATAA Guidance,
Navigation, and Control Conference, Boston, Aug. 10-
12, 1998.



Table 1: Selected results for 2000-ft altitude shift

pred. path conflict | aircraft conflict rate
time angle prob. pairs actual | expected diff.
min deg % # % % %
0-25 15-180 0-100 9511 45.9 46.4 -0.5
0-25 15-180 0- 20 4040 7.4 7.5 -0.1
20- 40 2582 18.1 29.7 -11.5
40- 60 2323 48.2 50.2 -2.0
60- 80 2593 78.7 70.5 8.1
80-100 2950 90.0 88.5 1.5
5-25 30- 60 40- 60 97 35.4 48.0 -12.6
60- 80 48 54.8 69.7 -14.9
80-100 30 80.8 91.1 -10.3
60- 90 40- 60 95 54.0 49.3 4.7
60- 80 75 78.8 69.6 9.2
80-100 46 97.0 88.6 8.4
90-120 40- 60 170 55.8 51.2 4.6
60- 80 168 78.4 70.6 7.8
80-100 123 95.2 88.1 7.1
120-150 40- 60 499 46.1 50.3 4.2
60- 80 605 75.5 70.6 5.0
80-100 508 89.9 87.1 2.8
150-180 40- 60 1452 48.6 50.2 -1.6
60- 80 1693 80.1 70.6 9.6
80-100 2238 89.8 88.8 1.1
5-10 30-180 40- 60 1079 48.7 50.5 -1.7
60- 80 1264 74.7 70.7 4.0
80-100 2023 89.0 88.4 0.6
10-15 40- 60 764 47.5 49.9 2.4
60- 80 961 76.3 70.3 6.0
80-100 1234 83.7 88.0 4.3
15-20 40- 60 608 49.3 49.8 -0.5
60- 80 639 75.0 70.2 4.8
80-100 742 80.9 88.3 -7.4
20-25 40- 60 373 49.2 50.1 -1.0
60- 80 290 75.9 70.4 5.5
80-100 354 78.1 88.5 -10.4




Table 2: Selected results for 4000-ft altitude shift

pred. path conflict | aircraft conflict rate
time angle prob. pairs actual | expected diff.
min deg % # % % %
0-25 15-180 0-100 904 29.7 37.0 -7.3
0-25 15-180 0- 20 535 1.7 7.0 -5.3
20- 40 384 11.5 30.3 -18.8
40- 60 252 44.3 49.5 -5.1
60- 80 186 69.9 69.6 0.3
80-100 161 93.3 89.1 4.1
5-25 30- 60 40- 60 90 35.1 47.8 -12.7
60- 80 37 55.1 69.8 -14.7
80-100 21 84.5 91.6 -7.1
60- 90 40- 60 74 58.2 49.5 8.8
60- 80 56 79.0 69.6 9.4
80-100 32 97.7 88.2 9.5
90-120 40- 60 23 62.4 53.0 9.4
60- 80 23 70.1 69.9 0.2
80-100 14 100.0 89.7 10.3
120-150 40- 60 18 51.9 51.8 0.1
60- 80 17 79.5 68.6 10.9
80-100 18 80.7 87.9 -7.2
150-180 40- 60 38 30.0 50.1 -20.1
60- 80 50 67.9 69.9 2.0
80-100 72 94.3 89.3 5.0
5-10 30-180 40- 60 100 41.8 50.7 -8.9
60- 80 102 62.6 70.8 -8.2
80-100 88 91.4 87.7 3.7
10-15 40- 60 100 40.2 50.0 -9.8
60- 80 70 73.8 66.2 7.6
80-100 35 84.2 88.4 4.2
15-20 40- 60 95 50.7 47.3 3.4
60- 80 17 52.0 69.4 -17.3
80-100 21 93.8 89.4 4.4
20-25 40- 60 28 55.7 45.9 9.8
60- 80 3 66.2 72.1 -5.9
80-100 9 93.9 88.2 5.7




