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Motivated by the need to select days with distinct traffic characteristics for evaluating 
novel air traffic management concepts and validating simulations, 517 days of delay data 
from the Federal Aviation Administration’s Air Traffic Operations Network database are 
analyzed. The daily total time delay in minutes is then used as a distance metric within the 
K-Means algorithm to organize the 517 days into ten groups. Convergence characteristics of 
the K-Means algorithm and summary statistics of the groups are presented. The single-
metric K-Means algorithm is then extended to create a multiple-metric K-Means classifier. 
Two examples of multiple-metric classification are presented using two different sets of 
metrics to partition the 522 days, the original 517 days and five special days, of data into 
groups. Results show that this multiple-metric classifier is useful for creating sets of days 
that represent a variety of traffic conditions.  

I. Introduction 
his paper is motivated by the need for selecting days with particular air traffic flow patterns and operational 
characteristics, as encapsulated in the performance metrics, for validating simulation models and evaluating 

next generation air traffic system concepts. Evaluation of system-wide impacts in terms of cost and benefits with 
one or two days of data, or with several days of data with similar traffic conditions, is of limited utility. Such 
evaluations therefore, have to be conducted with a set containing days with distinct characteristics. In order to 
balance the effort required against the quality of results achieved for these types of simulations and evaluations, a 
small set of days that covers all the possible traffic conditions is desirable. The multiple-metric classification method 
proposed in this paper makes it possible to create such a set of days.        

T 

       Prior effort on the selection of days for validating simulation models is described in Refs. 1 and 2. Reference 1 
contains a detailed description of the data and the procedure used, while Ref. 2 is a summary of the same. The 
approach consisted of using the K-Means algorithm, first proposed in Ref. 3, to partition the set of days into six 
significant groups, each with at least 2% of the days, and one outlier group for days that could not be assigned to the 
six significant groups. Each group was separated from others in terms of a single Euclidean distance metric 
composed of the eight chosen metrics. Based on analysis of the metrics associated with each of the six significant 
groups, they concluded that Ground Delay Program (GDP) minutes and total operations count, a measure of traffic-
volume, were the primary determinants of group membership. Threshold values were computed for these two 
metrics and used within a decision-tree for labeling a given day as a typical day characterized by one of the six 
groups. The main limitation of the method is that the Euclidean distance metric, constructed by adding quadratic 
terms corresponding to metrics with different scales and units, partitions days in the transformed domain of the 
combined metrics. This obscures the relation of the groups to the individual metrics. Thus, grouping with a finer 
level of granularity cannot be achieved with this method.  
 The method proposed in this paper overcomes the limitations of the previous approach by creating groups based 
on each metric individually using the K-Means algorithm. Each day is then tagged with a composite ID consisting of 
IDs of the groups it belongs to based on different metrics. For example, if a day is a member of Group 1 based on 
Metric 1, a member of Group 1 based on Metric 2, and a member of Group 3 based on Metric 3, it is tagged with the 
composite group ID of (1, 1, 3), where the first index indicates grouping based on Metric 1, the second based on 
Metric 2 and the third based on Metric 3. All days with the same tag are then placed in one group. A salient feature 
of the proposed algorithm is that the linguistic description of the group labels based on each metric is retained in the 
composite label of the final grouping. For example, if groups 1, 2 and 3 mean “low,” “medium” and “high,” 
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respectively, the composite label (1, 1, 3) means “low” based on the first metric, “low” based on the second metric 
and “high” based on the third metric.  Thus, the fidelity of partitions of individual metrics is retained in the final 
grouping.       
 The rest of the paper is organized as follows. Major trends observed in the 517 days of NAS delay data are 
described in Section II. Total time delay in minutes is used as a distance metric within the K-Means algorithm to 
partition the set of 517 days into ten groups in Section III. Convergence characteristics of the K-Means algorithm 
and summary statistics of the ten groups are provided in this section. A multiple-metric classification technique that 
builds on the single-metric classification technique is then developed in Section IV. Two examples of grouping of 
days are provided in Section IV to highlight the salient features of the algorithm. Conclusions are discussed in 
Section V.  

II. National Airspace System Delay and Traffic-Volume Characteristics  
To keep track of operational efficiency of the air traffic system, the Federal Aviation Administration (FAA) and 

the Bureau of Transportation Statistics (BTS) keep records of a multitude of metrics including delay, number of 
operations, conditions at airports, and traffic management initiatives in databases. Several of the frequently used 
databases are: Aviation System Performance Metrics (ASPM), Air Traffic Control System Command Center 
(ATCSCC) Logs, BTS data, Enhanced Traffic Management System (ETMS) and OPSNET. Detailed descriptions of 
the contents of these databases are available in Refs. 1 and 4. 

All the analysis and the results in this paper are based on OPSNET data, which are available via 
http://www.apo.data.faa.gov. OPSNET data only include delays of fifteen minutes or more experienced by 
Instrument Flight Rule (IFR) flights that are reported by the FAA facilities. These data do not include delays caused 
by mechanical or other aircraft operator problems. Speed reductions and pilot initiated deviations around weather 
are also not reported. Taxi times spent under non-FAA facilities, for example under company/airport ramp towers, 
are not included in delay reports.5  ASPM also provides delay data that are computed based on the Out-Off-On-In 
(OOOI) data provided by nine commercial and cargo carriers, which can also be utilized for analyzing days via the 
methods discussed in this paper. Although the trends in 
ASPM and OPSNET data are similar, the two databases 
contain very different types of data that make 
comparisons between them difficult. They are both 
useful depending on the analysis desired.  

OPSNET delay data are provided in a tabular form; 
numbers of aircraft delayed are reported by category, by 
class and by cause. Delays by category consist of 
numbers of aircraft that were subject to departure delays, 
arrival delays, enroute delays and traffic management 
system (TMS) delays. The distinction between the 
enroute and TMS delays is discussed later in this section. 
Delays by class consist of numbers of air carrier, air taxi, 
general aviation and military aircraft that were delayed. 
Delays by cause consist of numbers of aircraft that were 
delayed due to weather, terminal volume, center volume, 
equipment limitations, runway issues and “other” issues. 
International delays are included in the “other” category. 
In addition to these, average time delay in minutes and 
total time delay in minutes are included in the table. 

Seventeen variables of OPSNET national delay data 
for two days are summarized in Table 1. This table 
shows that the numbers of aircraft delayed by category 
(departure + arrival + enroute + TMS) add up to the total 
number of aircraft delayed. Similarly, the numbers of 
aircraft delayed by class and by cause also add up to the 
total number of aircraft delayed during the day of 
operation. Observe that the average delay is obtained by dividing the total time delay in minutes by the total number 
of delayed aircraft. 

Table 1. OPSNET NAS delay summary data. 
 
Data Variable 4/10/2004 4/13/2004 

Delays by Category 
Total # of Aircraft 391 2,312 
Departure 257 651 
Arrival 101 391 
Enroute 0 12 
TMS 33 1,258 

Delays by Class 
Air Carrier 338 1,769 
Air Taxi 26 474 
General Aviation 27 69 
Military 0 0 

Delays by Cause 
Weather 235 2,049 
Terminal Volume 59 27 
Center Volume 41 13 
Equipment 1 26 
Runway 30 24 
Other 25 173 

Time Delay 
Average Time (min.) 32.27 53.51 
Total Time (min.) 12,616 123,709 
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There are three significant trends that are easily seen 
in Table 1. First, the sum of departure and TMS delayed 
flights account for most of the delayed flights. Second, 
most aircraft are delayed due to weather. Third, as 
expected, total time delays are proportional to total 
numbers of aircraft delayed. 

To understand NAS delay characteristics, OPSNET 
delay data covering a period of 517 days (17 months) 
spanning the period from January 1, 2003 through May 
31, 2004 were analyzed.  Figure 1 shows a scatter plot of 
the percentages of aircraft delayed due to weather as a 
function of days. The mean percentage of aircraft 
delayed due to weather was found to be 66% and the 
standard deviation was found to be 21% for this dataset. 
Additional statistical characteristics are summarized in 
Table 2. These results show that the number of aircraft 
delayed due to weather represents a large fraction of the 
number of aircraft that experience delay in the NAS, a 
finding consistent with Ref. 6, which states that weather 
is responsible for approximately 70% of NAS delays. 

The data shown earlier in Fig. 1 was reorganized as a 
function of total number of aircraft that experienced 
delay. These transformed data are shown in Fig. 2. 
Figure 2 shows that on days when a large number of 
aircraft are delayed, weather is the dominant cause of 
delays. Percentages of aircraft delayed due to weather 
are widely scattered when fewer aircraft are delayed, 
which indicates that factors other than weather are also 
responsible for delays on those days.  

Figure 3 shows the number of aircraft delayed due to 
weather versus the total number of aircraft delayed. 
Viewing the sample points with respect to the diagonal 
line across the figure, it is clear that a high degree of 
correlation exists between the number of aircraft delayed 
due to weather and the total number of aircraft delayed 
in the NAS. Assuming both the number of aircraft 
delayed due to weather and the total number of aircraft 
delayed are random variables, the correlation coefficient 
was computationally determined to be 0.95. Correlation 
between the number of aircraft delayed due to weather 
and the total time delay in minutes due to all reportable 
causes (see the last row of Table 1 for an example) was 
found to be 0.94.  

The causes of delay other than weather were also 
studied. Their statistics are summarized in Table 3 along 
with those of weather delays. Correlation coefficients 1ρ  
in Table 3 are defined with respect to the total number of 
aircraft delayed, and correlation coefficients 2ρ  are 
defined with respect to the total accrued time delay in 
minutes. As evident from the correlation coefficient 
value of 0.21 in this table, the number of aircraft delayed 
due to volume has a weak linear correlation with the 
total number of aircraft delayed in the NAS. Correlation 
is even lower, 0.11, with respect to the total time delay in minutes. Similarly, the value of the correlation coefficient 
between the number of aircraft delayed due to equipment, runway and other non-US facilities, and the total number 

 
 
Figure 2. Percentage of aircraft delayed due to weather 

as a function of total number of aircraft 
delayed. 

Table 2. Statistical characteristics of percentages of 
aircraft delayed due to weather. 

 
Characteristic Aircraft delayed by weather 
Mean 66% 
Standard deviation 21% 
Minimum 5% 
Maximum 98% 
Median 70% 

 
Figure 1. Percentage of aircraft delayed due to 

weather.
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of aircraft delayed in the NAS was found to be 0.27. It was found to be 0.16 with respect to the total time delay in 
minutes. In the hierarchy of prime causal factors for delays, equipment and runway conditions follow weather. 
Results presented in this section suggest that delay metrics that encapsulate weather characteristics are likely to be 
useful in the classification of days. 

Delays attributed to weather, volume, and 
equipment, runway and other causes are realized via 
departure, arrival, enroute and TMS restrictions. 
Departure delays incur by holding aircraft at the 
gate, on the taxiway, short of the runway, and on the 
runway. Arrival delays accrue when aircraft are 
delayed in the arrival Center’s airspace or in 
Terminal Radar Approach Control airspace due to 
restrictions at arrival airports. Enroute delays occur 
when aircraft are held as a result of initiatives 
imposed by a facility for traffic management 
reasons such as volume regulation, frequency 
outage and weather. The other major category of 
delays in the OPSNET data is TMS delays, which 
result from national or local Center (coordinated 
with Air Traffic Control System Command Center) 
traffic flow management initiatives such as Ground 
Delay Programs, local Ground Stops (GS), 
Departure Sequencing Programs, Enroute Spacing 
Programs, Arrival Sequencing Programs, airborne 
holding, rerouting, Miles-in-Trail, Minutes-in-Trail  
and Fuel Advisory.  

 To determine relative contributions of delays 
attributed to departure, enroute and arrival phases of 
flights, and to TMS restrictions, percentages of 
aircraft delays by category were calculated for the 
517-day dataset. It was determined that on an 
average, on any given day, 47% of the aircraft that 
are delayed in the NAS, are delayed during 
departure, 1% during enroute and 14% during 
arrival phases of flight. The average percentage of 
aircraft delayed due to TMS was 39%. Analysis of 
the data showed that, on average, departure delayed 
flights and TMS delayed flights roughly account for 
86% of the flights that are delayed. Additional 
statistics that characterize these delays are 
summarized in Table 4. Note that the values of the 
correlation coefficients 1ρ and 2ρ listed in the table 
are with respect to the total number of aircraft 
delayed and the total accrued time delay in minutes, 
respectively.  

Since traffic management initiatives such as 
GDP and GS are applied to aircraft while they are 
on the ground, and rerouting and holding while they 
are airborne, TMS delays include both ground and 
airborne delay components. To separate TMS delay 
into ground delay and airborne delay components, 
analysis of GDP and GS data, that are also available 
via OPSNET, is needed. Like data in Table 1, these 
data are also provided in a tabular format with the following items: 1) date, 2) number of aircraft delayed, 3) total 
delay in minutes, and 4) average time delay in minutes. For example, GDP and GS data for two days, 10 April 2004 

 
Figure 3. Proportion of number of aircraft delayed 

due to weather to the total number of 
aircraft delayed in the NAS. 

Table 3. Summary of weather, volume, and 
equipment, runway and other delay 
characteristics.  

 
Characteristic Weather Equip., 

Runway 
& Other 

Volume 

Mean 66% 20% 14% 
Standard 
deviation 

21% 16% 11% 

0.95 0.27 0.21 
1ρ  

0.94 0.16 0.11 
2ρ  

Table 4. Summary of departure, enroute, arrival 
and TMS delay characteristics.  

 
Characteristic Departure TMS Arrival Enroute 
Mean 47% 39% 14% 1% 
Standard 
deviation 

17% 17% 8% 1% 

0.82 0.86 0.55 0.45 
1ρ  

0.73 0.86 0.51 0.49 
2ρ  
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and 13 April 2004, are shown in Table 5. NAS 
delay data for the same two days were 
previously itemized in Table 1. 

Ground delay and airborne delay 
components can be computed using NAS delay 
data (see delays by category in Table 1) and 
the GDP and GS delays (see Table 5) as 
follows. Let, , , and  be the 
numbers of aircraft delayed during departure, 
due to GDP, and due to GS, respectively. The 
total number of aircraft delayed on the ground 
is then 

dn GDPn GSn

 
 

 

 GSGDPdG nnnn ++=  (1) 

Number of aircraft delayed during the airborne phase can be obtained after subtracting GDP and GS components 
from TMS delays as, 

 )( GSGDPTMSeaA nnnnnn −−++=  (2) 

where , , and  are the numbers of aircraft delayed in arrival phase, in enroute phase, and due to TMS, 
respectively. Note that  

an en TMSn

 TMSeadAGT nnnnnnn +++=+=   (3) 

where  is the total number of aircraft delayed in the NAS. Results obtained using Eqs. (1) through (3) with 517 

days of OPSNET data are shown in Fig. 4; n  and  values are plotted against  values. This figure shows that 
when more aircraft are delayed, a significantly higher 
number of them are delayed on the ground compared to in 
the air.  

Tn

G An Tn

Statistical trends summarized in Table 6 show that on 
average 74% of the aircraft that experience delay are 
delayed on the ground, compared to an average of 26% that 
are delayed while airborne. The last row of Table 6 shows 
that on some days NAS conditions are unusual in that a 
large percentage of delayed aircraft experience airborne 

 
 
Figure 4. Proportion of number of aircraft delayed on 

the ground and in the air to the total number 
of aircraft delayed in the NAS. 

Table 6. Summary of aircraft delayed on ground 
versus aircraft delayed in the air. 

 
Characteristic Delayed on 

Ground 
Delayed in Air 

Mean 74% 26% 
Median 76% 24% 
Standard Deviation 11% 11% 
Minimum 23% 7% 
Maximum 93% 77% 

Table 5. OPSNET GS and GDP delay data. 
 

Data Variable 4/10/2004 4/13/2004 
Ground Stops 

# of Aircraft Delayed 3 98 
Minutes of Delay 292 7,079 
Average Delay 97.33 72.23 

Ground Delay Program 
# of Aircraft Delayed 6 1,044 
Minutes of Delay 244 85,166 
Average Delay 40.66 81.57 

Total Delays Due to GS and GDP 
# of Aircraft Delayed 9 1,142 
Minutes of Delay 536 92,245 
Average Delay 59.55 80.77 
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delay. Of the 665 aircraft that were delayed on 2/22/2003, 513 aircraft (77%) were delayed during their airborne 
phase of flight. The airborne and ground delay values for this day are marked with a large ‘X’ and a large ‘O’ in Fig. 
4.  

In addition to the NAS delay metrics discussed in this section, past studies such as Ref. 1, 2 and 7 have used 
metrics of traffic volume to select days for analysis. There is consensus in the literature that the “traffic volume” and 
the delay taken together characterize NAS operations, therefore traffic volume metrics are discussed next. OPSNET 
database includes Towers: Summary Report, Instrument Operations: Summary Report and Centers: Summary of 
Domestic Operations Report that contain traffic volume data. These three reports count traffic from different 
perspectives. One is unable to separate departure counts from arrival counts in the Towers: Summary Report and in 
the Instrument Operations: Summary Report. A departure at one facility is counted as a departure at that facility and 
as an arrival at a different facility. Since departures and arrivals are counted together twice in these reports, the total 
number of operations excluding the overflight operations have to be halved to estimate the number of departures or 
the number of arrivals. The Centers: Summary of Domestic Operations Report directly provides a count of the 
number of departures from airports within the ARTCCs. Since departure count eventually drives the overflight count 
and the arrival count, it represents the traffic demand. Due to this reason, departure count from the Centers: 
Summary of Domestic Count Report has been used in this paper. Table 7 lists the departure counts and the 
overflight counts for the two days. Departure counts excluding military flights for the two days obtained by 
summing the air carrier, air taxi and general aviation departures are 31,959 and 42,062.  

A histogram of the total domestic departure counts for the 517 days of data is shown in Fig. 5. The minimum and 
the maximum numbers of departures were found to be 25,677 on 11/27/2003 (Thanksgiving holiday) and 51,399 on 
5/27/2004 (Thursday). Observe that the histogram is bimodal which indicates that days can be classified into two 
categories - low departure count day and high departure count day. Reference 1 noted similar observations and 
offered evidence that the bimodal distribution is primarily due to the weekday versus weekend traffic levels.   
 This section described several delay and traffic volume metrics that are available in OPSNET data. Summary 
statistics described in the tables and the patterns observed in the figures suggest that these metrics can be used for 
distinguishing one day of NAS operations from 
another day of NAS operations. To illustrate the use of 
a metric for classifying days of operations, total time 

delay in minutes,  in Eq. (3), is used as a distance 
metric within the K-Means method in the next section. 

Tn

Table 7. Centers: Summary of Domestic 
Operations Report. 

 
Data Variable 4/10/2004 4/13/2004 

Departures 
Air Carrier 17,122 20,231 
Air Taxi 9,132 12,831 
General Aviation 5,705 9,000 

Overflights 
Air Carrier 23,021 23,753 
Air Taxi 3,556 4,318 
General Aviation 2,763 4,763  

Figure 5. Histogram of 517 days of total domestic 
departure counts. 

III. Single-Metric Classification 
The motivation for assigning or labeling days into groups with associated properties, such as mean delay values, 

is to aid selection of prototype days for analysis. For example, a few days from a group of days with large delays 
and from a group of days with small delays can be selected for system-wide studies using the National Aeronautics 
and Space Administration’s air traffic simulation, concept evaluation, and decision support tools such as the 
Airspace Concept Evaluation System (ACES), the Center TRACON Automation System (CTAS) and the Future 
ATM Concepts Evaluation Tool (FACET).8-11  

All classification processes use metrics, or features, of the data to partition it into groups. A popular 
classification method, known as the K-Means method, partitions data such that the means associated with the groups 
are as widely separated as possible.3 The method labels the data elements based on their closeness to the group 
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means for reducing the group variance. The K-Means algorithm consists of two steps: 1) the initialization step, and 
2) the iterative step. Data elements that are far apart from each other are chosen as the initial means of the groups 
during the initialization step. Each element is then assigned to the group that it is closest to, based on its distance 
with respect to the group’s initial mean value. Group means are then recomputed based on the elements assigned.  
Each element is then reassigned to its closest group based on its distance with respect to the recomputed mean 
values. This process of computation of the means and reassignment of elements to groups is continued in subsequent 
iterative steps. Convergence is achieved when the numerical values of the group means do not change with 
reassignment of the elements. Iterations are halted once convergence is achieved. 

To further clarify the initialization and the iterative steps of the K-Means algorithm, consider a vector with the 
following elements [0, 0.5, 0.8, 1.2, 5, 7, 12, 15, 20, 25]. If two groups are desired, the elements with values closer 
to 0 are assigned to the first group and the elements with values closer to 25 are assigned to the second group. Thus, 
elements one through seven are assigned to Group 
One and elements eight through ten are assigned to 
the Group Two in the initialization step. With this 
assignment of the elements to the groups, average 
values of the first group and the second group are 
3.79 and 20 and the standard deviation values are 
4.47 and 5. Reassignment of the elements based on 
the recomputed means results in the first six 
elements being assigned to Group One and the last 
four elements being assigned to Group Two in the 
first iterative step. Group means are recomputed in 
the next iterative step. These means are 2.42 and 18 
and the standard deviations are 2.87 and 5.72. The 
next iterative step results in the same means and the 
standard deviations as those in the prior step; final 
grouping is therefore achieved in the previous step. 
For this example, the K-Means algorithm partitions 
the data into two groups in three steps. 

If three groups are desired for the above 
example, a value from the vector that is far away 
from both 0 and 25 needs to be selected as the initial 
value for the third group. Observe that this value is 
12 since its minimum distance to 0 (12 units) and 25 (13 units) is a maximum compared to the minimum distances 
of other elements to 0 and 25. Other values in the vector are less than 12 units with respect to either 0 or 25. Once 
these initial group means are chosen, the subsequent iterative steps are the same as those described in the previous 
paragraph. It should be noted that good initial conditions are needed because the K-Means algorithm is sensitive to 
initial conditions.  

 
 
Figure 6. Convergence characteristics of the K-Means 

algorithm as it partitions the 517 days into 
ten groups. 

The K-Means algorithm was used for classifying 517 days into ten groups using total time delay in minutes as 
the discriminating metric. The choice of 
ten groups was arbitrary. The algorithm 
converged in thirteen iterations. Its 
convergence characteristics are shown in 
Figure 6. Properties of the ten groups, 
based on total time delay statistics of the 
elements assigned to the groups, are 
summarized in Table 8. The second 
column of the table shows the number of 
days in the group, with the group ID 
given in the first column. Columns three 
and four show the average delay and the 
standard deviation of the delays in 
minutes. Columns five and six show the 
minimum and maximum delays in 
minutes of the days belonging to the 
particular groups. The data in this table 

Table 8. Summary of properties of the ten groups. 
 

Group 
ID 

Number 
of Days 

Mean 
Delay 
(min.) 

Standard 
Deviation 

(min.) 

Minimum 
Delay 
(min.) 

Maximum 
Delay 
(min.) 

1 145 11,302 4,310 1,686 18,834 
2 126 26,626 4,489 19,107 34,628 
3 92 43,026 5,095 34,947 52,113 
4 57 61,239 5,198 52,562 70,011 
5 38 80,090 5,421 71,186 90,464 
6 32 102,820 5,944 94,023 112,031 
7 11 124,652 3,612 119,692 131,172 
8 7 141,633 5,854 133,884 148,341 
9 7 163,501 5,887 156,717 172,211 

10 2 183,426 4,083 180,539 186,313 
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show that there are fewer days in groups associated with large delays. For example, group number ten consists of 
only two days compared to group number one with 145 days. Observe that the mean values associated with the 
groups are approximately equally spaced and that the standard deviation values are fairly close to each other. 
Standard deviation values can be expected to increase with fewer groups. 

 Probability density functions corresponding to Gaussian distributions with the group means and standard 
deviations listed in Table 8 are shown in Figure 7. Note that the extent of the abscissa is limited to the range of the 
delay data.  

Sixteen days (seven days in Group 8, seven days in 
Group 9 and two days in Group 10) that experienced large 

delays are listed in Table 9. Of the 517 days grouped by the K-Means algorithm, the least delay of 1,686 minutes 
occurred on 1/11/2003 (a Saturday) and most delay of 186,313 minutes occurred on 5/13/2004 (a Thursday).  

Table 9. Days with large delays. 
 

Results presented in this section demonstrate the use of the K-Means algorithm for partitioning a set of days into 
groups organized in order of a single metric like total time delays. The next section describes a labeling technique 
that enables use of the single-metric K-Means classification technique for achieving classification based on multiple 
metrics. 

IV. Multiple-Metric Classification 
Motivation for multiple-metric classification stems from the desire for finer levels of partitioning. For example, a 

group with large mean delay contains days when aircraft were delayed due to weather and also days when aircraft 
were delayed due to runway conditions. In order to discern which ones were affected by weather and which ones 
were affected by runway conditions, one would need metrics such as numbers of aircraft delayed due to weather and 
due to runway conditions, in addition to total delays.  Fidality  
 Classification based on multiple metrics has been traditionally accomplished by weighing and combining several 
metrics into a single metric, and then using it in a K-Means algorithm. For example, if day ‘ ’ was characterized by 

metrics: , , …,  and if day ‘

q
f 1,qu 2,qu fqu , r ’ was similarly characterized by , , …, , a weighted 

quadratic function of the form 
1,ru 2,ru fru ,

 2
,,

1
, )( lrlq

fl
lrq uuwd −= ∑

≤≤

 (4) 

can be defined as the distance metric between days  and q r . Note that  through are the weights 
corresponding to the different metrics. Interpretation of the distance metric, Eq. (4), for grouping days with the K-
Means algorithm is straightforward with as the mean of measure l  in group

1w fw

lrp , r . Distance to each group can then 
be written as: 

Group ID  Date Total Delay (min.) 
8 7/7/2003  133,884 
8 8/3/2003  148,341 
8 8/4/2003  147,888 
8 11/12/2003  134,602 
8 2/6/2004  143,857 
8 3/5/2004  139,558 
8 5/14/2004  143,298 
9 3/20/2003 160,764 
9 7/22/2003  164,069 
9 8/1/2003  159,471 
9 5/12/2004  170,777 
9 5/17/2004  160,496 
9 5/18/2004  172,211 
9 5/31/2004  156,717 

 10 5/13/2004  186,313 
Figure 7. Gaussians representing the ten groups. 10 5/21/2004  180,539 
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  (5) mknjpuwd ljlk
fl

ljk ≤≤≤≤−= ∑
≤≤

1;1;)( 2
,,

1
,

where is the number of metrics, m is the number of days and is the number of groups.  f n
 Although the distance metric, Eq. (5), enables transformation of a multiple-metric classification problem into a 
single-metric classification problem, its deficiencies are noteworthy. Limitations stem from the fact that metrics 
have different scales and units, and that only their combined contribution is available in the distance metric; 
classification is insensitive to individual contribution. For example, consider the two metrics in Table 1: 1) number 
of aircraft affected by departure delays and 2) total time delay. Units of the two metrics are quite different, number 
of aircraft and minutes. The scales are also different by an order of magnitude; 257 aircraft impacted by departure 
delays versus 12,616 minutes of total time delay on 10 April 2004. To compensate for these differences, the 
associated weights have to be scaled correctly, and their units have to be chosen appropriately to enable summation 
of quantities with disparate units. References 1 and 2 suggest that the inverse of the statistical variance of the metric 
should be used to weigh its contribution. Even with this scaling, a meaning cannot be ascribed to the grouping in the 
native domain of the metrics.   
 In order to overcome the limitations of the weighted quadratic distance function used in the prior approach of 
Refs. 1 and 2, a multiple metric classification technique that treats each metric independently of others in an -
dimensional metric space is proposed. Since each metric is treated independently, the single metric K-Means 
algorithm described earlier in Section III can be used for assigning days to groups based solely on each metric. IDs 
of these groups are then coordinates in the -dimensional metric space. For the sake of discussion, consider the 
problem of classifying days into four groups using two metrics. Using the K-Means algorithm twice, days are first 
assigned to four groups based on Metric One, and then to four groups based on Metric Two. The resulting sixteen 
possible groups are labeled using two indices as follows: (1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4), (3, 1), 
(3, 2), (3, 3), (3, 4), (4, 1), (4, 2), (4, 3) and (4, 4). The first index denotes group ID based on Metric One and the 
second index denotes group ID based on Metric Two. Thus, a day which is assigned to the second group based on 
Metric One and to the first group based on Metric Two is a member of group (2, 1). Since a unique group is labeled 
using two indices in this two metric classification problem, the combined group IDs are coordinates in a two-
dimensional metric space. 

f

f

 Generalization of the technique to metrics such that days are classified into groups using metric results in  f ln l

 ∏
≤≤

=
fl

lg nn
1

 (6) 

number of possible groups. Equation (6) shows that if the same number of groups is desired for each metric, the 
number of possible groups is given in terms of the power of . For example if groups are desired with each 

metric, the number of possible groups is . Thus, it is seen that the growth in the number of groups is explosive 
with increasing number of metrics. Should one conclude that the growth is unbounded based on this observation, or 
is there an upper bound on the number of groups? The answer is provided by the following. If each day is classified 
into its own group, one would have the same number of groups as the number of days; hence, number of days is the 
upper bound. This fact also implies that if is the number of days and , there are at least  number 

of empty groups, groups without any members. Removing these empty groups, the number of possible groups, , 
is given as 

f n
fn

m mng > mng −

gn

  ∏
≤≤

=
fl

lg nmn
1

),min(  (7) 

   
where each .  mnl ≤

Is it possible that several of the groups counted in Eq. (7) are empty? One can demonstrate this to be true by 
constructing the following examples. Consider the problem of classifying ten days into two sets of five groups using 
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two metrics. Following the nomenclature of Eq. (7), 2=f  for the two metrics, 51 =n using Metric One, 52 =n  
using Metric Two, and for the ten days. Substituting these numerical values in Eq. (7) it is seen 
that . Assume that the first two days are assigned to Group 1, the third and the fourth to Group 2, the fifth 
and the sixth to Group 3, the seventh and the eighth to Group 4, and the final two to Group 5 based on Metric One, 
and also based on Metric Two. In this scenario, groups with members are (1, 1), (2, 2), (3, 3), (4, 4) and (5, 5). All 
other groups labeled with two different indices, such as (1, 2), (1, 3) and (5, 1), are empty.  

10=m
10=gn

A similar example can be constructed to show that empty groups are possible even when . Ifmng < 2=f  for 

the two metrics,  using Metric One,21 =n 22 =n  using Metric Two, and 10=m  for the ten days, 4=gn from 
Eq. (7). If the first five days are assigned to Group 1 and the next five to Group 2 based on both the metrics, groups 
(1, 1) and (2, 2) are non-empty while groups (1, 2) and (2, 1) are empty. These two examples clearly show that it is 
always possible to have empty groups. 
 An aspect of multiple-metric classification that has not been discussed so far is the semantics associated with the 
group IDs. Without a linguistic meaning, it is difficult to interpret what do group IDs such as (1, 1) and (1, 2) mean. 
One of the ways of attributing a meaning to the indices is to order them according to the increasing values of the 
group means. For example if total time delay in minutes was the metric being considered, the index with the least 
value would correspond to the group with the minimum mean total time delay while the index with the highest value 
would correspond to the group with the maximum mean total time delay. From an implementation perspective, once 
classification into specified number of groups is accomplished with the K-Means algorithm using a single metric, 
and group means are computed based on the metric values of the assigned members, the group means are sorted in 
an increasing order. Indices of the groups are then re-labeled to reflect the sorted order. This procedure is repeated 
for each metric to obtain the complete set of indices required for labeling the groups. 

Table 10.  Three groups based on number of aircraft delayed in 
the airborne phase. 

 
Group 

Number 
Number 
of Days 

Mean 
Number 
Delayed 

Standard 
Deviation  

Minimum 
Number 
Delayed  

Maximum 
Number 
Delayed  

1 393 124 49 7 218 
2 128 314 100 222  970 
3 1 1891 0 1891 1891 

  To illustrate the utility of the multiple-metric classification technique, an example of classifying 522 days, which 
included the 517 days discussed previously and five special days used in earlier studies, into groups is presented 
next. These five special days are 5/17/2002, 4/17/2005, 4/21/2005, 6/5/2005 and 7/15/2005. 5/17/2002 is the ACES 
baseline day. The other four days were used earlier in Ref. 7. They were categorized as a low-volume low-weather 
day, high-volume low-weather day, low-volume high-weather day and high-volume high-weather day, respectively 
in Ref. 7.  
 Three metrics- 1) total domestic departure counts, 2) number of aircraft delayed on the ground, and 3) number of 
aircraft delayed in the air were used as the basis for classification in the multiple-metric K-Means algorithm 
described in this paper. Recollect that the total domestic departure counts were obtained from the Centers: Summary 
of Domestic Counts Report discussed in Section II. Numbers of aircraft delayed on the ground and delayed in the air 
were computed using Eqs. (1) and (2). Days were initially organized into three groups using the single-metric K-
Means algorithm. When number of aircraft delayed in the air was used as a metric, 393 days were assigned to Group 
1, 128 to Group 2 and one to Group 3. The mean and the standard deviation values derived from the number of 
aircraft delayed in the airborne phase 
metric of the assigned members for these 
groups are listed in Table 10. The sole 
member of Group 3, 7/15/2005, had 
excessive amount of airborne delay of 
1891 minutes. 1661 aircraft were delayed 
on the ground on this day. Since this day 
is an outlier, it has the effect of increasing 
the standard deviation of the other groups. 
Due to this reason, it was removed from 
the dataset. 
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Table 13.  Three groups based on number of aircraft delayed on 
the ground. 

 
Group 

Number 
Number 
of Days 

Mean 
Number 
Delayed 

Standard 
Deviation  

Minimum 
Number 
Delayed  

Maximum 
Number 
Delayed  

1 249 379 160 48 646 
2 185 913 173  651  1,293 
3 86 1,689 328 1,309  2,778 

Table 12.  Groups based on number of aircraft delayed in the 
airborne phase (excluding 7/15/2005 and 6/5/2005). 

 
Group 

Number 
Number 
of Days 

Mean 
Number 
Delayed 

Standard 
Deviation  

Minimum 
Number 
Delayed  

Maximum 
Number 
Delayed  

1 291 103 36 7 158 
2 174 214 38 159  295 
3 55 382 71 304  604 

Table 11.  Three groups based on number of aircraft delayed in 
the airborne phase (excluding 7/15/2005). 

 
Group 

Number 
Number 
of Days 

Mean 
Number 
Delayed 

Standard 
Deviation  

Minimum 
Number 
Delayed  

Maximum 
Number 
Delayed  

1 386 123 47 7 213 
2 134 304 81 214 604 
3 1 970 0 970 970 

 The analysis was repeated with the 
remaining 521 days. The resulting 
grouping showed that 6/5/2005 became the 
sole member of Group 3 with 970 aircraft 
delayed in the airborne phase and 753 
aircraft delayed on the ground. Table 11 
summarizes these results. Comparing 
Table 10 to Table 11, it is seen that the 
removal of 7/15/2005 data lowers the 
standard deviation values of the groups. 

Since 6/5/2005 is an outlier day, it was also 
removed from the dataset.  

Classification based on number of 
aircraft delayed in the airborne phase for 
the remaining 520 days are summarized in 
Table 12. Observe that the standard 
deviation values decrease further for 
groups 1 and 2. It increases for Group 3. 
The mean values decrease for all three 
groups.  

Table 14.  Two groups based on total domestic departure 
counts. 

 
Group 

Number 
Number 
of Days 

Mean 
Delay 
(min.) 

Standard 
Deviation 

(min.) 

Minimum 
Delay 
(min.) 

Maximum 
Delay 
(min.) 

1 168  34,792 2,920 25,677 40,528 
2 352 46,335  2,243 40,596 51,759 

Days belonging to Group 1 can be 
thought of as days with low number of 
aircraft delayed while airborne; in Group 2 
as days with medium number of aircraft 
delayed and the ones in Group 3 as days 
with large number of aircraft delayed. 
Similar categorization based on number of 
aircraft delayed on the ground partitions the 
days in Groups 1 through 3, whose 
statistics are summarized in Table 13. 
Results obtained using total domestic 
departure counts are provided in Table 14. 
Note that the days were classified into two 
groups based on the bimodal distribution 
seen in Fig. 5. 

Comparing Tables 12 and 13, it is seen 
that the trends are similar with the largest 
number of days assigned to groups with 
lower mean and lower standard deviation 
values. The trends are different in Table 
14. More days are assigned to Group 2 
with higher mean departure counts. 

Given that three groups were created 
using two metrics and two groups using one metric, the total number of possible composite groups, determined 
using Eq. (7), is 18. The range of IDs for these groups is (1, 1, 1) to (2, 3, 3). With the first index being the group 
number associated with the total domestic departure counts metric, the second index being the group number 
associated with the number of aircraft delayed on the ground metric, and the third index being the group number 
associated with the number of aircraft delayed during the airborne phase metric, each day in the set of 520 days has 
a three index group ID associated with it.  
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Table 15. Final grouping with three-metric classification. 
 

Group Group ID Number 
3μ 3σ1μ 2μ 1σ 2σ      

Number of Days 
1 (1, 1, 1) 94 33,970 310 83 2,718 158 37 
2 (1, 1, 2) 14 33,698 444 224 3,179 149 41 
3 (1, 1, 3) 2 34,650 373 348 6,588 120 41 
4 (1, 2, 1) 27 36,060 880 110 2,565 152 33 
5 (1, 2, 2) 19 36,816 951 221 1,916 159 37 
6 (1, 2, 3) 2 36,583 951 390 4,185 305 95 
7 (1, 3, 1) 3 35,219 1,713 131 4,418 301 8 
8 (1, 3, 2) 6 37,067 1,586 213 2,296 204 30 
9 (1, 3, 3) 1 36,485 1,462 355 0 0 0 

10 (2, 1, 1) 89 45,495 383 110 2,200 151 31 
11 (2, 1, 2) 47 46,195 483 204 2,008 117 33 
12 (2, 1, 3) 3 43,944 505 447 2,494 148 52 
13 (2, 2, 1) 60 47,330 898 113 1,961 188 31 
14 (2, 2, 2) 50 46,393 911 205 2,383 156 36 
15 (2, 2, 3) 27 45,934 953 359 2,201 196 58 
16 (2, 3, 1) 18 46,686 1,614 116 2,190 326 31 
17 (2, 3, 2) 38 47,027 1,728 231 1,947 380 41 
18 (2, 3, 3) 20 46,539 1,721 408 2,537 261 81 

Organizing the resulting 
triple index group IDs 
using a “dictionary sort” 
algorithm, each unique 
group and its members are 
determined. The values of 
the metrics of the members 
are then used for 
determination of minimum, 
maximum, mean and 
standard deviation values 
associated with the groups. 
Results of this process for 
the three-metric 
classification problem, 
being discussed here, are 
outlined in Table 15. Group 
means for the three metrics 
are listed in the columns 
labeled 1μ , 2μ  and 3μ ; 
standard deviation values 
are listed in the columns 
labeled as 1σ , 2σ  and 3σ . 
Many of the salient features of multiple-metric classification algorithm are 
apparent from data in Table 15. A majority of days, 94 and 89, are 
assigned to Group (1, 1, 1) and Group (2, 1, 1). These groups represent 
days on which few aircraft were delayed. The difference between them is 
that Group (1, 1, 1) represents low-volume days while Group (2, 1, 1) 
represents high-volume days. Table 15 shows that a large number of days 
were assigned to groups (2, 2, 1) and (2, 2, 2) that represent high-volume 
days on which many aircraft were delayed on the ground. There are 
several groups with few days assigned to them; five groups had three or 
less than three days assigned to them. Table 16 lists the corresponding 
dates. Member days belonging to small groups can be considered to be 
special. Days in Group 3 with Group ID (1, 1, 3) experienced relatively 
low total departure counts, fewer aircraft affected by ground delay, and 
higher number of aircraft affected by airborne delay. Two members of 
Group 6 had more aircraft delayed on the ground compared to members of 
Group 3. Three member days of Group 7 had many more aircraft delayed 
on the ground and few during the airborne phase. The sole member of Group 9 had many aircraft delayed while on 
ground and while in the air. The member days of Group 12 experienced high departure counts, relatively few aircraft 
delayed on the ground, and a large number of aircraft delayed during the airborne phase.  

Table 16. Days in small groups. 
 

Group Group ID Date 
Number 

3 (1, 1, 3) 2/22/2003 
3 (1, 1, 3) 5/16/2004 
6 (1, 2, 3) 6/14/2003 
6 (1, 2, 3) 3/28/2004 
7 (1, 3, 1) 9/14/2003 
7 (1, 3, 1) 5/23/2004 
7 (1, 3, 1) 5/30/2004 
9 (1, 3, 3) 1/4/2004 

12 (2, 1, 3) 5/2/2003 
12 (2, 1, 3) 5/5/2003 
12 (2, 1, 3) 9/30/2003 

Another example of multiple-metric classification using total domestic departure counts and delays by cause: 1) 
weather, 2) volume, 3) equipment, runway and other, as metrics for partitioning 522 days into groups is summarized 
in Table 17. Numbers of aircraft delayed due to terminal volume and due to center volume (see “Delays by Cause” 
in Table 1) were combined to obtain the number of aircraft delayed due to volume. Similarly, numbers of aircraft 
delayed due equipment, runway and other issues were added together for obtaining the number of aircraft impacted 
due to these causes. As in the previous example, days were categorized into groups with the K-Means algorithm 
using each of these four metrics one at a time. Observe that in this example, days are partitioned into 37 groups out 
of 54 possible groups.  
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Table 17. Final grouping obtained using departure counts and delays by cause metrics. 
 

Group 
Number 

Group ID Number 
of Days 1μ  2μ  3μ  4μ  1σ  2σ  3σ  4σ  

1 (1, 1, 1, 1) 86 33,648 268 49 72 2,932 160 36 44 
2 (1, 1, 1,  2) 22 35,243 357 60 252 2,172 174 39 64 
3 (1, 1, 1, 3) 2 33,691 154 79 498 175 168 58 4 
4 (1, 1, 2, 1) 7 35,796 355 212 89 1,339 159 61 34 
5 (1, 1, 2, 2) 3 37,448 402 198 259 794 251 28 61 
6 (1, 1, 2, 3) 2 36,120 352 229 495 889 40 20 144 
7 (1, 1, 3, 1) 1 35,484 296 401 173 0 0 0 0 
8 (1, 1, 3, 2) 1 39,454 394 541 238 0 0 0 0 
9 (1, 2, 1, 1) 25 35,770 963 50 90 2,920 209 35 46 

10 (1, 2, 1, 2) 7 36,854 960 80 238 2,653 302 38 68 
11 (1, 2, 1, 3) 2 37,021 962 73 587 378 385 30 170 
12 (1, 2, 2, 1) 2 37,118 960 291 105 3,430 353 1 28 
13 (1, 2, 2, 2) 2 38,540 741 306 249 659 41 100 164 
14 (1, 2, 3, 2) 1 36,485 898 710 209 0 0 0 0 
15 (1, 3, 1, 1) 4 37,143 1,567 40 148 3,049 132 32 25 
16 (1, 3, 2, 1) 2 37,814 1,867 177 129 580 27 11 1 
17 (2, 1, 1, 1) 78 45,508 325 80 104 1,774 171 26 36 
18 (2, 1, 1, 2) 21 45,740 330 85 234 2,349 173 21 47 
19 (2, 1, 1, 3) 8 45,690 370 91 458 1,609 210 24 83 
20 (2, 1, 2, 1) 29 46,356 337 194 98 2,204 181 46 36 
21 (2, 1, 2, 2) 21 47,496 319 215 274 2,293 129 51 65 
22 (2, 1, 2, 3) 7 47,610 314 195 491 1,867 148 36 58 
23 (2, 1, 3, 1) 2 45,004 411 412 147 6,233 270 33 13 
24 (2, 1, 3, 2) 2 50,358 192 382 265 1,981 85 18 11 
25 (2, 1, 3, 3) 1 48,983 407 551 540 0 0 0 0 
26 (2, 2, 1, 1) 64 46,090 940 80 96 2,318 217 30 39 
27 (2, 2, 1, 2) 27 46,392 977 96 250 2,481 220 28 48 
28 (2, 2, 1, 3) 3 47,117 1,172 106 555 2,916 331 24 293 
29 (2, 2, 2, 1) 19 46,817 898 205 96 1,910 216 51 38 
30 (2, 2, 2, 2) 17 47,587 1,021 205 262 2,533 241 53 58 
31 (2, 2, 2, 3) 3 47,360 765 424 407 4,315 142 337 113 
32 (2, 2, 3, 3) 2 45,890 744 429 434 1,870 64 20 71 
33 (2, 3, 1, 1) 26 46,221 1,940 66 80 1,646 341 30 42 
34 (2, 3, 1, 2) 13 47,142 1,897 88 252 2,020 279 26 61 
35 (2, 3, 1, 3) 2 45,527 1,943 109 410 3,341 586 8 3 
36 (2, 3, 2, 1) 5 47,467 1,735 209 120 482 227 34 37 
37 (2, 3, 2, 2) 3 49,992 2.055 160 280 1,271 915 17 70 

Table 18 lists the group membership of holidays and special days - ACES baseline day, Joint Planning and 
Development Office (JPDO) baseline day and days studied in Ref. 7. Group IDs from Table 15 are listed under 
Group ID 1 heading and from Table 17 under Group ID 2 heading. Results in this table show that the domestic 
departure counts are generally lower on holidays. Group ID 1 (2, 2, 2) indicates that the ACES baseline day has high 
departure counts, moderate number of aircraft delayed on the ground, and moderate number of aircraft delayed in 
the air; Group ID 2 (2, 2, 1, 1) indicates high departure counts, moderate number of aircraft delayed due to weather, 
low number of aircraft delayed due to volume and low number of aircraft delayed due to equipment, runway and 
other issues. The two group IDs for the JPDO baseline day indicate high departure counts, moderate number of 
aircraft delayed on ground, low number of aircraft delayed in the air, low number of aircraft delayed due to weather, 
moderate number of aircraft delayed due to volume and high number of aircraft delayed due to equipment, runway 
and other conditions. Ref. 7 considered 4/17/2005 to be a low departure count, low-delay due to weather day. The 
group IDs in Table 18 label this day as a high departure count, low-delay due to weather day. The departure count of 
40,653 on this day is at the lower end of the high departure count group can be inferred from the statistics given in 



Table 18. Classification of holidays and special days. 
 

Number Date Significance Day of Week Group ID 1 Group ID 2 
1 5/17/2002 ACES Baseline Day Friday (2, 2, 2) (2, 2, 1, 1) 
2 1/1/2003 New Year’s Day Wednesday (1, 1, 1) (1, 1, 1, 1) 
3 1/20/2003 Martin Luther King Day Monday (1, 1, 1) (1, 1, 1, 1) 
4 2/17/2003 President’s Day Monday (1, 1, 1) (1, 1, 1, 1) 
5 5/26/2003 Memorial Day Monday (1, 1, 1) (1, 1, 1, 1) 
6 7/4/2003 Independence Day Friday (1, 1, 1) (1, 1, 1, 1) 
7 9/1/2003  Labor Day Monday (1, 2, 1) (1, 2, 1, 1) 
8 10/13/2003 Columbus Day Monday (2, 1, 1) (2, 1, 2, 1) 
9 11/11/2003 Veterans Day Tuesday (2, 2, 1) (2, 1, 2, 1) 

10 11/25/2003 Two Days Before Thanksgiving Tuesday (2, 3, 1) (2, 1, 3, 3) 
11 11/27/2003 Thanksgiving Day Thursday (1, 1, 2) (1, 1, 1, 1) 
12 12/25/2003 Christmas Day Thursday (1, 1, 1) (1, 1, 1, 1) 
13 1/1/2004 New Year’s Day Thursday (1, 1, 1) (1, 1, 1, 1) 
14 1/19/2004 Martin Luther King Day Monday (2, 1, 1) (2, 1, 2, 2) 
15 2/16/2004 President’s Day Monday (2, 2, 2) (2, 2, 2, 2) 
16 2/19/2004 JPDO Baseline Day Thursday (2, 2, 1) (2, 1, 2, 3) 
17 5/31/2004 Memorial Day Monday (1, 3, 2) (1, 3, 2, 1) 
18 4/17/2005 Ref. 7 L/L Day  Sunday (2, 1, 1) (2, 1, 1, 2) 
19 4/21/2005 Ref. 7 H/L Day Thursday (2, 1, 2) (2, 1, 3, 2) 
20 6/5/2005 Ref. 7 L/H Day Sunday Not included (1, 3, 1, 1) 
21 7/15/2005 Ref. 7 H/H Day Friday Not included (2, 3, 2, 2) 

 
Table 14. Classification of 4/21/2005 as high departure count, low-delay due to weather day is in agreement with 
Ref. 7 except that many aircraft were delayed due to volume on this day. The results in Table 18 for 6/5/2005 and 
7/15/2005 are in agreement with Ref. 7. Both these days experienced an inordinate amount of airborne and ground 
delays due to weather. A number of aircraft were also delayed due to volume, and equipment, runway and other 
issues on 7/15/2005.  

The results of the two examples considered here show that 1) days can be classified into the specified number of 
groups based on each individual metric, 2) the individual metric group labels can be used for creating multiple-
metric group labels, and 3) linguistic description of the individual metric grouping is retained in the composite group 
label. These examples also illustrate that the multiple-metric classification method does not require that the number 
of groups be the same based on each metric for creating composite group IDs. In the first example, days were 
organized in two groups using the total number of departure counts metric and in three groups using the number of 
aircraft delayed on the ground and the number of aircraft delayed in the air. This technique of maintaining different 
numbers of groups along different axes of the metric space is in contrast with the method described in Ref. 1 and 2 
that only partitions data along the single distance metric.    

Results demonstrate that the multiple-metric classification method generates groups with several members and 
also groups with few members; thus, identifying both nominal and off-nominal days. By selecting a typical day from 
each group, and then using traffic data corresponding to those days, enough data diversity can be assured for 
validation of simulations and for Monte Carlo type of benefits analysis of novel air traffic management concepts. 
Resulting benefits metrics can be weighed with number of members in the group that each day is associated with for 
estimating overall benefits.  

V. Conclusions 
Consistent with other studies, analysis of 517 days of National Airspace System (NAS) delay data, which were 

obtained from the Federal Aviation Administration’s Air Traffic Operations Network (OPSNET) database, showed 
that weather is the predominant causal factor for delays; equipment and runway conditions, and traffic-volume are 
the other major causal factors. It was also determined the departure and traffic management system delays account 
for about 86% of the aircraft that are delayed. Ground Delay Program and Ground Stop delay data, also obtained 
from OPSNET, were combined with the NAS delay data to obtain the number of aircraft delayed on the ground and 
in the air. The results obtained indicate that on an average 74% of the delayed aircraft are delayed on the ground 
while only 24% are delayed in the air.  
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The daily total time delay in minutes was used as a discriminating metric within the K-Means algorithm for 
partitioning 517 days into ten groups. Mean time delay values associated with the resulting groups, computed using 
time delay values of the member days, arranged in increasing order were found to be approximately equidistant from 
the preceding and succeeding mean values. Differences between the standard deviation values associated the groups 
were also found to be small. Most of the days were assigned to groups with smaller mean time delays. Days with 
large delays were also identified by the algorithm. 

A multiple-metric algorithm was synthesized with the single-metric K-Means algorithm at its core. The 
technique consists of creating groups using each metric individually as a distance metric within the single-metric K-
Means algorithm. Member days are labeled with the group numbers associated with the metrics. Final grouping is 
achieved by assigning days with a common label to the same group, such that groups are labeled by the same 
number of indices as the number of metrics. The multiple-metric algorithm was applied to the problem of organizing 
the 522 days into groups using a) total domestic departure counts, b) number of aircraft delayed on the ground and c) 
number of aircraft delayed in the air as the three metrics. Two days that were found to be outliers were removed and 
the remaining 520 days were classified into 18 groups. Six of the 18 groups had six or fewer days as members. 
Although these groups represent unusual days, their inclusion in a set of days that represents diverse air traffic 
conditions is essential for evaluating concepts and validating simulations. The other 12 groups had 14 or more days 
as members. Another example of multiple-metric classification of 522 days into groups with a) total domestic 
departure counts, b) weather delays, c) volume delays and d) equipment, runway and other delays as the chosen 
metrics was presented. In this instance, 37 groups out of 54 possible groups had member days. Of the 37 groups, 20 
groups had five or fewer days as members. Comparing the results obtained via the two examples, it was seen that 
different sets of days can be created and certain unusual days can be identified based on the choice of metrics. The 
two examples serve as illustrations of the ability of the multiple-metric algorithm to create datasets, consisting of 
days classified into groups, with enough data diversity for concept evaluation and simulation validation.             
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