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A number of air traffic management decision support tools (DST) are being developed to
help air traffic managers and controllers improve capacity, efficiency, and safety in the
National Airspace System. Although DST functionality may vary widely, trajectory
prediction algorithms can be found at the core of most DST. A methodology is presented for
the automated statistical analysis of trajectory prediction accuracy as a function of phase of
flight (level-flight, climb, descent) and look-ahead time. The methodology is focused on
improving trajectory prediction algorithm performance for DST applications such as
conflict detection and arrival metering. The methodology has been implemented in software
and tested with air traffic data. Aggregate trajectory prediction accuracy statistics are
computed and displayed in histogram format based on 2,774 large commercial jet flights
from five different days of Fort Worth Center air traffic data. The results show that
trajectory prediction anomalies can be detected by examining error distributions for large
numbers of trajectory predictions. The ability of the trajectory analysis methodology to
detect the effects of subsequent changes to the trajectory prediction algorithm and to
aircraft performance model parameters was also demonstrated.

Nomenclature
Altitudep = predicted altitude
Altitude; = radar track altitude
‘Pp = predicted course
T, = look-ahead time n
AX = difference in x-coordinates
AY = difference in y-coordinates
Xp = predicted x-coordinate position
Xt = radar track x-coordinate position
Yp = predicted y-coordinate position
Y = radar track y-coordinate position

Introduction

RAJECTORY prediction algorithms are a critical core component of decision support tools (DST) for conflict
detection, arrival metering, and other applications in air traffic management automation. A 4-dimensional (4D)
trajectory prediction contains data specifying the predicted horizontal and vertical position of an aircraft over some
time span into the future, or time horizon. The ability of the trajectory prediction algorithm to accurately predict 4D
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trajectories for a wide variety of aircraft types under a number of different flight conditions is likely the single most
important factor in determining the overall accuracy and effectiveness of an air traffic management DST.

Trajectory predictions form the basis for the main, application dependent, DST calculations. For example,
conflict detection applications compare trajectory predictions of a number of aircraft against one another in order to
identify those aircraft pairs that may be in conflict at some time in the future (i.e., horizontal and vertical separation
below some specified minimum). Arrival metering applications depend on trajectory predictions to determine the
times when aircraft will pass over a specified location, such as a meter fix. In both applications, the accuracy of
aircraft trajectory predictions will directly affect DST calculations and, ultimately, the utility of the DST.

The prediction time horizon of interest is also application dependent and can be on the order of twenty minutes
for conflict detection and arrival metering applications, the focus of this study. For example, a radar, or R-side,
controller is most concerned with conflict detection for time horizons on the order of five minutes in length. A
planning, or D-side, controller is more concerned with conflict detection in the ten to twenty minute time horizons.
In addition, trajectory prediction accuracy degrades as the time from prediction, or look-ahead time, increases.
Trajectory prediction accuracy at the beginning of a trajectory’s time horizon (i.e., short look-ahead time) is better
than the accuracy towards the end of the time horizon (i.e., long look-ahead time). As a result, trajectory prediction
accuracy should not only be measured in terms of position error, but also as a function of look-ahead time.

A trajectory prediction is calculated based on current (i.e., known) aircraft state and intent information. The
intent of real aircraft, however, cannot be expected to remain constant throughout the time horizon of a trajectory
prediction because of the influences of the air traffic environment (e.g., a climbing aircraft leveling off at a
temporary altitude for traffic). This changing aircraft intent information makes the later portion of a trajectory
prediction’s time horizon invalid. Only the predicted position data for times prior to the change in intent would be
valid for a trajectory prediction calculated some time earlier. Changes in aircraft intent occur unpredictably in real
air traffic and will hide the true accuracy of a trajectory prediction algorithm if not factored out.

A typical trajectory prediction consists of a set of climb, level flight, and descent phases of flight. Trajectory
predictions for climb and descent phases of flight are inherently less accurate than level flight predictions because
modeling of aircraft performance for these phases of flight is more complex. Prediction error for a complete
trajectory would likely vary depending on the phases of flight that make up that trajectory prediction. Therefore,
trajectory prediction errors for each phase of flight need to be determined separately.

Trajectory prediction accuracy is affected by a number of real world uncertainties. Examples of uncertainties
that contribute to trajectory prediction error include wind error, unknown aircraft thrust and weight, and track data
noise. In order to derive a meaningful measure of trajectory prediction accuracy with the presence of such
uncertainties, statistical analysis of trajectory prediction errors is needed. Obtaining statistically representative error
measurements is a labor intensive process requiring the analysis of a large number of trajectory prediction samples.
For this reason, an automated process for collecting air traffic data, factoring out unpredictable intent changes, and
calculating trajectory prediction errors is required.

Previous DST research and development activities have applied various methods for measuring prediction
accuracy. Cale et al, defined a generalized methodology for measuring trajectory prediction accuracy and then
applied it to the analysis of trajectory predictions for en route Center controller DST." Though this approach
produced a general measure of trajectory prediction accuracy, the method does not distinguish trajectory prediction
errors between different phases of flight (e.g., climb versus level flight) nor does it effectively account for intent
changes. As a result, it is difficult to determine what parts of the trajectory prediction are causing errors.
Measurements of trajectory prediction accuracy have been made under controlled field test conditions where aircraft
intent is known and/or controlled.” Such field tests are resource intensive and are not practical on a regular basis.
Other analysis of trajectory prediction accuracy using air traffic data recordings depended on analysts to manually
select data samples free of intent changes.”” This manual technique is not efficient for analyzing the large amounts
of data that are required for a statistical analysis. An automated process for the statistical analysis of meter fix
crossing times for the Center TRACON Automation System (CTAS) has been developed.”’ However, this approach
was based on the arrival time accuracy, an indirect and incomplete measure of trajectory prediction error.

The objective of this paper is to develop an automated methodology to determine a statistical measure of
trajectory prediction accuracy that is focused on the analysis of trajectory prediction algorithm performance for each
phase of flight. The methodology is to be used as a tool to evaluate DST trajectory prediction accuracy, identify
trajectory prediction anomalies, and facilitate improvements. Such a trajectory prediction analysis tool is vitally
important for the continual development of trajectory prediction algorithms.

The paper is organized as follows. The first section is a description of the methodology, detailing the recording
and analysis of the trajectory data. An evaluation of the methodology using CTAS is described in the next section.
The paper closes with some concluding remarks summarizing the results of this study.
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Methodology

This methodology is defined by two main processes which are designed to complement each other. The first
process records the raw data required for the trajectory prediction analysis. In addition to the trajectory predictions
themselves, reference or truth data for the aircraft position and altitude are recorded. Trajectory prediction errors are
a function of the look-ahead time and are to be measured in terms of along track, cross track, and altitude errors
relative to actual aircraft position. Actual aircraft position is determined by the radar track and altitude data
recorded as the aircraft proceeds forward in time from the point at which the trajectory prediction was computed.
These position data will be used as the truth data from which the trajectory prediction errors are calculated.

The second process performs the trajectory prediction error analysis of the raw radar and trajectory prediction
data. In this process, unpredictable changes in aircraft intent are factored out of the data and trajectory prediction
errors are calculated by phase of flight. Changes in aircraft intent are determined by analyzing the filed flight plan.
A typical flight plan contains the departure and arrival airports, waypoints describing the intended horizontal path of
the flight, and the planned flight altitude. The intended vertical profile of a flight is determined by assuming the
aircraft will climb or descend to the planned or assigned flight altitude. Furthermore, flight categories such as
departures, arrivals, and overflights can be characterized by one predominant phase of flight (i.e., climb, descent,
and level flight, respectively). This categorization simplifies the search for intent changes by focusing it on one
phase of flight at a time. If a deviation from the predominant phase of flight is detected in the radar track data, that
would signify an intent change that could then be factored out. The process for extracting trajectory segments free
of unpredictable intent changes from the recorded trajectory prediction and radar data is referred to as
“segmentation” and will be described in a later section.

Trajectory Prediction Recording

It is necessary to develop a set of rules for the recording of trajectory predictions and the corresponding radar
track data that would facilitate the segmentation process. The underlying premise for the trajectory prediction
recording rules is that once a prediction is made, no update to the prediction is made unless there is a change in
aircraft intent or phase of flight. Although a DST such as CTAS updates the aircraft’s trajectory for every radar
track hit (approximately 12 seconds apart), this methodology does not require this capability. For this methodology,
it is necessary to hold a trajectory prediction constant for as long as it is valid, so that one trajectory prediction, with
longest possible time horizon, can be used for the trajectory error measurements of each segment.

The recording of a trajectory prediction for an aircraft is initialized when the beginning of a predominant phase
of flight is detected in the radar track data. For a departure, the initial trajectory prediction is recorded when the
aircraft begins to climb above a minimum altitude. The start of a climb can be detected in the radar track data by
observing the rate of climb. In the case of CTAS, a filtered value for rate of climb, calculated from the radar track
history, is used to indicate whether an aircraft is climbing, flying level, or descending. This is referred to as the
altitude status and is noted on every track hit. A minimum recording altitude of 15,000 ft is applied in this study to
ensure aircraft are in the en route climb portion of their departures where maneuvering is at a minimum. The
minimum recording altitude may be varied to suit the particular needs of an analysis. Similarly, recordings are
initialized for overflights and arrivals when the start of level flight and descent phases of flight are detected.

Once an initial trajectory prediction is recorded for an aircraft, it is not updated until one of two events occur.
One of the events that would trigger an updated trajectory prediction to be recorded is an aircraft intent change such
as a flight plan amendment or temporary altitude entered into the Host computer (i.e., the computer system in the
Air Route Traffic Control Center (ARTCC) that processes radar data, flight plans, and controller inputs) by an air
traffic controller. An intent change invalidates the portion of the previous trajectory that had been predicted to occur
after the intent change because that portion would not reflect the new intent of the aircraft. The time and altitude of
the trajectory prediction update are recorded, so that the invalid portion of the previous trajectory prediction can be
factored out later in the segmentation process. A delay of 36 seconds (approximately three radar track hits) is
applied before the trajectory prediction is updated and recorded to allow the aircraft time to react to the new intent.
This delay is also necessary because the DST may receive intent information from the Host while between trajectory
prediction updating cycles.

Information regarding an aircraft’s intent is not always known because such information may not be entered into
the Host. For this reason, a second trajectory prediction updating trigger, independent of the Host intent
information, is also used. Similar to the method by which trajectory predictions are initialized, this trigger
mechanism looks for changes in the altitude status to determine if an aircraft is beginning a new predominant phase
of flight segment. For example, if a departure aircraft has leveled off at a temporary altitude that has not been

3
American Institute of Aeronautics and Astronautics



entered into the Host, its altitude status would indicate level flight. Level flight radar track segments for departures
are not analyzed. Once the aircraft resumes its climb, the altitude status will change to indicate climbing, signifying
the start of a new predominant phase of flight segment. At this point a trajectory prediction update is recorded.

Both trajectory prediction updating triggers are necessary because neither trigger alone could achieve the desired
effect. There are circumstances when two trajectory prediction updates can occur in short succession. However,
this is an acceptable side effect from using both rules to ensure trajectory prediction updates are not missed.

The conclusion of the trajectory prediction recording for an aircraft is flight category specific as well. For a
departure, the recording concludes when the aircraft climbs to its planned flight altitude. Arrival recordings
conclude when they descend to some specified altitude such as the meter fix altitude. Recording for all flight
categories will conclude if the aircraft leaves the Center boundary (i.e., the outer limit of the radar data used in this
study).

The resulting trajectory prediction data set for each aircraft includes information regarding the time, position,
and intent of the aircraft when each trajectory prediction is recorded, and the trajectory predictions themselves. In
the case of CTAS, the data set for each aircraft is stored in its own file. The radar track data for all aircraft are
stored in one file. Extracting the corresponding radar data for each aircraft is done in the post recording, trajectory
segmentation process.

Trajectory Segmentation

Trajectory segmentation is the second process of the trajectory analysis and is performed after the trajectory
prediction data are recorded. Typical trajectory predictions contain data for time horizons that may include intent
changes and segments made up of phases of flight other than the predominant one. In the segmentation process,
segments made up of the predominant phase of flight are extracted from the trajectory prediction and radar track
data recordings. Specific criteria are applied to factor out intent changes from the data segments before error
calculations are performed.
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Figure 1: Climb segmentation for a departure. a) Vertical profile b) Horizontal profile

An example of a simple departure profile in which an aircraft climbs to its planned flight altitude before starting
its level flight cruise leg is shown in Fig. 1. In this example, data for a single trajectory prediction are shown with
the prediction start point represented by a star. The recorded radar track data for the same aircraft are also shown.
For a departure, the segmentation process extracts only the climb segment from the trajectory prediction and radar
track data. The segmentation process truncates each set of data such that the segments will have the same start and
end times. The resulting segments to be used for the error calculations are represented in Fig. 1 by the solid portion
of each respective line. The start time for a segment is the time the recorded trajectory prediction is actually
calculated. Since CTAS calculates trajectories at each radar track hit, the segment start time and the first radar track
time of the segment are the same.
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Table 1. Segment End Time Criteria

Phase of Segment Ending Events for Segment Ending Events for
Flight Trajectory Prediction Data Radar Track Data
Climb predicted altitude >= trajectory update altitude track altitude >= trajectory update altitude
predicted altitude >= end-of-recording altitude track altitude >= end-of-recording altitude
predicted altitude >= temporary altitude track altitude >= temporary altitude
track altitude status = climb
Level Flight None track altitude status = level
Descent predicted altitude <= trajectory update altitude track altitude <= trajectory update altitude
predicted altitude <= end-of-recording altitude track altitude <= end-of-recording altitude
predicted altitude <= temporary altitude track altitude <= temporary altitude
track altitude status = descent
All predicted time >= trajectory update time track time >= trajectory update time
predicted time >= end-of-recording time track time >= end-of-recording time

The segment end time is determined by event-driven criteria based on the phase of flight of the trajectory
segment being analyzed. These criteria are summarized in Table 1. Both the radar track and trajectory prediction
data are searched for segment ending events. The time corresponding to the first occurrence of any segment ending
event in either the trajectory prediction or radar track data marks the end of that particular segment.

The first segment ending event for the example shown in Fig. 1 occurs when the radar track altitude is equal to
the end-of-recording altitude (i.e., planned flight altitude for departures). The resulting segment end time is the time
corresponding to this event. The same segment end time is applied to both radar track and trajectory prediction data
of the segment. Consequently, the trajectory prediction data are truncated at this time, prior to that data actually
reaching the planned flight altitude. This example is characteristic of an aircraft with an actual rate of climb greater
than the predicted rate.

Flights with multiple segments can also occur. In the arrival example shown in Fig. 2, the descending aircraft
levels off at a temporary altitude before completing its final descent. Two trajectory predictions are recorded in this
example, which correspond to the beginning of each of
the two descent segments. The first segment ending
event occurs when the predicted altitude is equal to the
temporary altitude. The radar track data for segment
one are truncated at the same end time, before the
temporary altitude is reached.

The second segment in Fig. 2 illustrates a trajectory
prediction anomaly. A level flight leg is predicted to
occur in the trajectory before the descent leg, even
though the actual aircraft is descending. Based on the
segment end time criteria, the second segment ends
when the radar track altitude is equal to the end-of-
recording altitude (i.e., minimum recording altitude for
arrivals). The trajectory prediction data are truncated
at this time, but the level flight leg remains. This level
flight anomaly will manifest itself as an altitude error
when the trajectory prediction errors are calculated for
the segment.
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Figure 2: Arrival with multiple descent segment

Trajectory Prediction Errors

The trajectory prediction errors are calculated for each radar track point in a segment. These errors are a
function of look-ahead time. The look-ahead time is measured from the segment start time to a radar track point as
illustrated in Fig. 1. The corresponding trajectory prediction point is obtained by interpolating the trajectory
prediction data for the same look-ahead time. Altitude, along track, and cross track errors are calculated with the
following equations:
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Altitude Error = Altitudep - Altitudet (D)

AX = Xp - Xt

AY = Yp - Yy
Along Track Error = AX sin lPp + AY cos ‘I‘p 2)
Cross Track Error = AX cos lI’p - AY sin IPp 3)

The radar track point and its corresponding
trajectory prediction point are indicated by subscripts t M - Prediction 1
and p, respectively. Along track error, Eq. (2), is - Prediction 2
measured parallel to the predicted course, ‘Pp. Cross

track error, Eq. (3), is measured perpendicular to the
predicted course. The predicted course was used in the
error equations because estimated course derived from
the radar track data was noisy.

The altitude errors for the example in Fig. 2 are
shown in Fig. 3. The duration of each segment typically
differs, resulting in a decreasing number of samples as T, T, T, T, T,
the look-ahead time increases. For the analyst-selected Look-ahead Time
look-ahead times (T, Ty, etc.), error data are compiled  gjoyre 3: Altitude error versus look-ahead time
for each segment. Data from a number of segments are
necessary to obtain a statistically representative number of samples, especially for the larger look-ahead times. In
this example, Prediction 1 does not contribute a sample for look-ahead time T4. Error samples for each segment are

Altitude Error

compiled as a function of look-ahead time and presented in a histogram format. Along track and cross track errors
are presented in the same manner.

Data Outlier Limits
Data outliers are identified by establishing  Table 2. Trajectory Outlier Limits
limits on the calculated altitude, along track, and

cross track errors. By analyzing the .da'ta Phase of Flight
collected for this study, reasonable error limits
were determined. Calculated errors greater than Climb/Descent | Level Flight

these limits can be attributed to aircraft that were
clearly deviating from their trajectories for
unpredictable reasons. The limits are a function Cross Track (nm) =5 =5
of phase of flight. Trajectory segments with a )

cach:)ulated errof outside Jof an;, one of the limits Altitude (ft) = 5000 = 1000
shown in Table 2 were excluded from all segment
statistics.

The majority of the exclusions were due to large cross track errors. This was attributed to aircraft deviating from
their filed flight plan route. It is not uncommon for aircraft to fly off their flight plan route. Aircraft intent
information is a vital component of a trajectory prediction and must be entered into the Host for it to be processed by
the prediction algorithm. Because these types of route deviations are not entered into the Host, it is not possible to
make valid trajectory prediction for these aircraft. Therefore, these segments were excluded from the error statistics.

Along Track (nm) =10 =20
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Methodology Evaluation

The goal of this evaluation was to demonstrate that the methodology was capable of making statistical
measurements of trajectory prediction accuracy with enough sensitivity to facilitate improvements to the trajectory
prediction algorithm. A series of accuracy measurements were conducted using the baseline trajectory prediction
algorithm. Based on the results of these measurements, the trajectory algorithm or the aircraft performance model
was refined, and a second round of measurements were conducted to confirm any improvements.

The trajectory analysis methodology was evaluated on the NASA-developed CTAS with radar track data from
the Fort Worth ARTCC (ZFW). CTAS software version dated October 27, 2003 was used as the baseline for the
evaluation. Trajectory prediction recording functionality was implemented into the existing data recording features
of CTAS. The post recording, trajectory segmentation process was implemented with a combination of Perl and
Matlab scripts.

Approximately eighteen hours of radar data were collected over five different days between June and August
2003. Weather data for the same period were also saved. The data for this evaluation were limited to large
commercial jet aircraft flights (e.g., Airbus, Boeing) totaling 800 departures, 1,168 overflights, and 806 arrivals.
Flight categories in ZFW are defined relative to the primary airports in the Center, Dallas-Fort Worth (DFW) and
Dallas-Love Field (DAL). This data set was consistently used for all analysis in this evaluation.

Level Flight Trajectories

Level flight data from overflights were used for the initial methodology evaluation. Trajectory prediction
recording for an overflight was initiated when the altitude status first indicated level flight. This could occur
immediately after the first radar track hit. Along track and cross track error histograms for segments with look-
ahead times of fifteen minutes, calculated with the baseline trajectory prediction algorithm, are shown in Fig. 4.
200r Total Segments: 813 250 Total Segments: 813

Stat. Segments: 672 Stat. Segments: 672

Mean: -1.854 Mean: 0.1519
Std Dev: 5.454 Std Dev: 1.444

I

=]
n
=3
S

T

Number of Segments
)
o
T
Number of Segments
g
T

1
=]
o
S
T

s ) | Hﬂﬂm L Ofﬁ‘ﬁ‘ﬁ‘ ﬂﬁmﬁ

-20-18-16-14-12-10 -8 -6 —4 2 0 6 8 10 12 14 16 18 20 5 _4 -3 _2 _1 5
Along Track Error (nm Cross Track Error ( nm)

o
S

Figure 4: Baseline level flight trajectory errors for a look-ahead time of 15 minutes

The total number of level flight segments with data for a look-ahead time of fifteen minutes was 813, including
outliers. Approximately 17 percent of the segments were excluded from the statistics based on the limits defined in
Table 2. The mean and standard deviation for the along track error of the remaining 672 segments were -1.9 nm and
5.5 nm, respectively. Cross track error mean and standard deviation were 0.15 nm and 1.4 nm. Analysis of the
along track and cross track histograms indicate the outlier limits were not so stringent as to affect the error
distributions. Excluded segments were more than three times the standard deviation (30) from the mean.

A more detailed investigation of individual flights on the “fringes” of the along track error distribution revealed
that ground speed error contributed directly to the increased along track error. Horizontal position and ground speed
data for a representative flight (COA1711) are shown in Fig. 5.
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Figure 5: Horizontal position and ground speed predictions for COA1711
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The ground speed data are plotted versus a system
reference time. The corresponding along track error for
the first twenty minutes of the segment is shown in Fig.
6. For a fifteen minute look-ahead time, the along track
error is approximately -20 nm. The predicted trajectory
for COA1711 had negligible cross track error and
altitude error. a ' T

The airspeed used for level flight trajectory I - — s 10 12 14 16 185 2
predictions is highly dependent on predicted winds and Look-ahead Time (min)
the ground speed at the time of prediction. In this case, a Figure 6: Along track error for COA1711
ground speed of approximately 405 knots, determined
from the third radar track hit, was used to derive the airspeed for the trajectory prediction. This value is clearly
slower than the ground speed for subsequent radar tracks. Accordingly, the resulting trajectory prediction errs on
the slow side, leading to a large negative along track error (Eq. 2).

For CTAS, ground speeds for the first two radar tracks are initialized with ground speed values directly from the
Host. The first two ground speed values for COA1711 were initialized with the relatively low values of 235 knots
and 356 knots. Ground speeds for subsequent radar tracks are calculated from position data. Because ground speed
is calculated from noisy position data obtained from the Host, a filter is applied by CTAS to smooth the ground
speed values. It takes approximately ten radar tracks for the filter to effectively stabilize the initial ground speed
calculations.
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Figure 7: Ground speed prediction and along track error with ground speed filter delay for COA1711

In order to get a more accurate measurement of the
trajectory prediction error, the CTAS trajectory

n

Q

=]
1

prediction recording software was changed so that no ;g;flssfggr;":nn::gfg
trajectory prediction was recorded until ten radar tracks £ 1so- Mean: -1616
have been received for a given aircraft, minimizing the & St Dev: 3844
influences of poor quality ground speed data from the g 100r

Host. The ground speed and along track error plots for é sol

COA1711 with the ground speed filter delay are shown = H

in Fig. 7. The trajectory prediction was calculated 0l mﬂ.ﬂ LA
based on an airspeed derived from a ground speed of T o akeroramy e

approximately 469 knots, a value more representative of
the subsequent radar tracks. The corresponding along
track error for a look-ahead time of fifteen minutes
decreased from -20 nm to -5 nm. Although the along
track error was not zero, a significant source of error
has been accounted for.

This ground speed filter delay was applied to the entire data set and the trajectory predictions were recalculated.
The resulting histogram, shown in Fig. 8, demonstrates the sensitivity of the error measurements made with this
methodology. The effects of a small change that influences the trajectory prediction algorithm were detected. Note
the reduction of error at the fringes of the distribution. The standard deviation of the along track error for a fifteen

Figure 8: Level flight along track errors with ground
speed filter delay for a look-ahead time of 15 minutes
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Figure 9: Level flight along track errors with ground speed filter delay for look-ahead times of: a) 10 minutes
and b) 20 minutes

minute look-ahead time was reduced from 5.5 nm to 3.8
nm. The number of statistical segments was reduced or Total Segments: 507
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fifteen minutes. 2 ol

Trajectory prediction errors for other look-ahead 2 ol ﬂ H
times were also evaluated. Along track error histograms L R e s 1H2ﬁé TEra
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time, the fewer the segments that are available and the Lot Segments: 507

of twenty minutes.
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Climb Trajectories s s
Climb trajectory prediction error analysis was Grs Tk (o

conducted with departure data. Prediction time horizons 2001 Total Segments: 507

for climb data are inherently shorter than that of level ° Stat. Segments: 454

flight data because only the climb portion of the departure gso* St Dev: 1709

trajectory prediction is analyzed. Climb trajectory 2 100}

prediction error histograms for a look-ahead time of five 2

minutes are shown in Fig. 10. Climb data outliers were 2 | ﬂ ﬂ ﬂ

excluded from the statistical segments based on the limits 0 = ‘ ‘ ‘ ‘ 1 ‘

defined in Table 2. All but two outliers were attributed to ~5000 -4000 3000 -2000 "°§’\?mude°5,,o,(}{;°° 20003000 4000 5000

excessive cross track error. The other two outliers were  Fjgure 10: Climb trajectory prediction errors for
due to excessive altitude error. As with the level flight a look-ahead time of 5 minutes

outlier limits, climb outlier limits were large enough so

that the general error distributions were not affected.

Climb trajectory predictions are more sensitive to aircraft performance model information than level flight
predictions. The data set used in this analysis contained a number of different large jet aircraft types. The wide
distribution of altitude errors about the mean suggest that the trajectory predictions for some aircraft types were
better than others.
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Figure 11: MD80 climb trajectory prediction errors for a look-ahead time of 5 minutes

A more detailed analysis of the aircraft types in this data set revealed 225 of the 454 statistical segments were
from MDB80 aircraft. This was not unexpected because DFW is an airport hub for American Airlines, a major user
of MD80 aircraft. Along track and altitude error histograms with only the MD80 segments are shown in Fig. 11.
The MD8O0 altitude error distribution was not as widely distributed about the mean. The standard deviation was 998
feet compared to 1709 feet for the complete data set. The MD80 histogram clearly showed the predicted rate of
climb was higher than the actual rate, resulting in a large positive altitude error (Eq. 1). The mean MD80 along
track error indicated the predicted position of the aircraft was behind the actual position.
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Figure 12: Radar track vs. trajectory prediction for AAL326
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Figure 13: Trajectory prediction errors vs. look-ahead time for AAL326
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Radar track data and the corresponding trajectory predictions for a single, representative MD80 flight (AAL326)
are shown in Fig. 12. The altitude data are plotted versus a system reference time. In this example, there are two
climb segments, the initial trajectory followed by a trajectory update due to a flight plan amendment. Along track
and altitude errors as a function of look-ahead time for AAL326 are shown in Fig. 13. Trajectory prediction errors
at a look-ahead time of zero are partially due to the asynchronous nature of the trajectory calculation and recording
processes within CTAS and are currently being addressed with planned software improvements. For the purpose of
this methodology evaluation, it was not necessary to factor out these initial errors.

Improvements to the MDS80 climb trajectory prediction accuracy were sought by adjusting weight, thrust, and
speed parameters in the aircraft performance model within CTAS. A process of adjusting performance model
parameters followed by recalculating the trajectories for three to five representative flights was performed until the
trajectory errors approached zero. In this case, the thrust multiplier was reset from 2.3 to the nominal value of 2.0.
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With a nominal thrust multiplier applied, climb weight adjustments were used as the primary means of reducing
altitude error, while climb speed adjustments were used to reduce along track error. Climb weight was reduced from
the default value based on 90% of the maximum takeoff weight of 147,000, or 132,300 Ib, to 121,500 1b. Climb
speed was increased from 280 knots to 300 knots. The resulting trajectory prediction errors with the adjusted model
parameters for AAL326 are shown in Fig. 14. The along track errors and the altitude errors have been reduced. For
a look-ahead time of five minutes, the along track error decreased from approximately -2 nm to -0.4 nm. Altitude

error decreased from approximately 2,100 feet to 600 feet for a look-ahead time of five minutes.
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Figure 14: Trajectory prediction errors with adjusted model for AAL326
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Descent Trajectories

Descent trajectory prediction accuracy for the
vertical profile was found to be affected by trajectory
prediction anomalies. An altitude error histogram for
descent trajectories, with a look-ahead time of two
minutes, exhibits an abnormal error distribution and is
shown in Fig. 17. Mean altitude error for descent
trajectories with a look-ahead time of two minutes is
498 feet with a standard deviation of 2,245 feet. This
wide error distribution about the mean is characteristic
of undesirable trajectory algorithm performance.

A more detailed analysis of individual flights
revealed anomalies with the building of trajectories for
flights with temporary altitudes. The radar track plot
and the corresponding altitude error plot for a
representative arrival flight (AAL1602) with these
temporary altitude anomalies are shown in Fig. 18 and
19. The first segment for AAL1602 is a descent from
the planned flight altitude to a temporary altitude of
24,000 ft. This segment is followed by a descent to the
meter fix altitude of 11,000 ft, which is entered by a
controller into the Host as a temporary altitude.
Descents to two temporary altitudes prior to entering
TRACON airspace are typical of ZFW arrivals.

The actual aircraft track is descending in both
segments. The trajectory segments resulting from the
recording and segmentation rules for arrivals should
have yielded descent trajectories for each trajectory
segment. However, each segment clearly begins with a
level flight leg. These anomalies manifest themselves
as altitude errors, as shown in Fig. 19. For a look-ahead
time of two minutes, the errors are approximately 5,000
feet and 1,500 feet.

There are two specific parts of the CTAS software
that affect the processing of temporary altitudes for
arrival trajectory predictions, in this case. The first part
was in effect for the first segment shown in Fig. 18. If
the level flight segment at a temporary altitude was
predicted to be less than fifteen nautical miles, an
inadvertent error condition was created, causing the
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temporary altitude to be ignored. As a result, a nominal arrival trajectory was built by the trajectory prediction
algorithm that consisted of a level flight segment followed by an idle thrust descent segment, direct to the meter fix
(i.e., bypassing the temporary altitude). If the actual aircraft is descending, as in this case, the desired trajectory is
an immediate descent and level off at the temporary altitude, regardless of the length of the level flight segment at
that temporary altitude, followed later by a descent to the meter fix. Radar track data shows that the actual aircraft

follows this trajectory.
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The other part of the temporary altitude processing software affects the second segment. This part of the
software caused a nominal arrival trajectory to be predicted if the temporary altitude was the same as the meter fix
altitude. As with the first segment, the actual aircraft was descending to the temporary altitude at the time the
predicted trajectory was computed. Therefore, the trajectory prediction should start with a descent segment to the
temporary altitude instead of starting with the level flight segment. Changes to the trajectory prediction algorithm
were made to correct these temporary altitude anomalies. The resulting radar track and altitude error plots for
AAL1602 are shown in Fig. 20 and 21. Both trajectory predictions now begin with descent segments, not unlike the
actual aircraft trajectory. As a result, trajectory prediction error has been reduced.
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General Limitations

The general limitations to the accuracy measurements of this methodology can be classified into two categories,
air traffic data source biases and sampling. As might have been expected, the applicable scope of the trajectory
prediction accuracy measurements was dependent on the air traffic data source, in this case, ZFW. The presence of
biases in the data source will affect the generalization of the accuracy assessment. For example, improvements to
the Boeing 757 climb trajectory prediction accuracy due to adjustments to the climb weight may not be realized in
the Oakland ARTCC, which includes heavier transcontinental and extend over-water flights not typically present in
ZFW. Wind model biases may also be present in the data. Although random wind errors, as well as other errors, are
accounted for by using a statistical analysis, biases will not be. Overall accuracy assessments should only be made
in the context of the air traffic found in the data source. Additional data would need to be analyzed in order to
obtain a broader accuracy assessment.

Limitations due to sampling were directly related to the rules established for the trajectory prediction recording
and segmentation processes. Although these rules facilitate automation, current rules have limited the types of
trajectory predictions analyzed. For example, low speed, level flight trajectory predictions associated with arrival
flight metering were not analyzed. Current recording and segmentation rules only considered the relatively high
speed, level flight trajectory predictions of overflights. Additional recording and segmentation rule need to be
developed so that a wider range of trajectories can be analyzed.
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Conclusion

The technical changes that can be implemented to improve DST trajectory prediction accuracy are widely
understood. However, an efficient and effective method for performing statistical analysis and measurements of
trajectory prediction accuracy using real air traffic data has not been universally adapted. The ability to measure
improvements, or lack thereof, to the trajectory prediction algorithms against real air traffic is a fundamental
necessity for continual DST development. For this reason, a methodology for automated trajectory prediction
analysis was developed.

The methodology is based on rules that were automated to record, segment, and remove outliers from trajectory
data. The automated, trajectory segmentation process factored out unpredictable changes in aircraft intent that
affected trajectory prediction accuracy measurements. This methodology facilitated the analysis of large,
statistically representative amounts of data, resulting in meaningful and versatile trajectory prediction error
measurements.

The methodology evaluation demonstrated the versatility of the trajectory prediction error measurements. These
error measurements were sensitive to small trajectory prediction algorithm changes. Overall trajectory prediction
accuracy was assessed as well as trajectory accuracy improvements due to aircraft performance model changes.
Analysis of the error histogram distributions created with this methodology was used to effectively identify
trajectory prediction anomalies. Once an anomaly was identified, the same methodology was applied to evaluate the
effectiveness of any subsequent algorithm changes. This methodology has proven to be an effective, labor saving
new medium for facilitating improvements to CTAS trajectory prediction accuracy, and therefore, DST
performance.
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