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Traffic management decisions and automation supporting those decisions currently lack 

accurate departure demand information.  Future departure demand is typically predicted 

using the scheduled departure times of each individual flight, which are shown to be poor 

estimates of actual departure times.  This paper describes an approach to improve the 

prediction of parking gate departure times for individual flights, thereby improving the 

knowledge of departure demand at longer prediction horizons.  The approach uses air 

carrier-provided data about when certain milestones in preparing for departure are 

completed.  Actual times for pre-departure events are compiled in advance from historical 

data.  These statistics are then used to improve gate departure time predictions in real-time.  

This paper presents an algorithmic approach for applying pre-departure event times to 

improve gate departure time predictions for individual flights and applies the method using 

Aircraft Communication Addressing and Reporting System (ACARS) messages from a large 

domestic air carrier at a busy airport.  Results show the benefit of applying this pre-

departure information to two existing automation systems that predict gate departure times 

– the Surface Management System and the Enhanced Traffic Management System.  The 

application of ACARS data using the proposed algorithm provides a 36% improvement to 

the gate departure time predictions. 

I. Introduction 

RAFFIC management decisions and automation supporting those decisions currently lack accurate departure 

demand information.  Future departure demand is typically predicted using the scheduled departure times of 

individual flights.  These times have been shown to be poor estimates of actual departure times, especially during 

periods of high delays when traffic management is most necessary.
1
 Errors in predicted departure demand affect 

national flow management as well as traffic management at the regional – Air Route Traffic Control Center 

(ARTCC) and Terminal Area Approach Control (TRACON) – and airport level. 

A flight’s actual takeoff time is revealed when the aircraft takes off and is detected by terminal area radar.  Prior 

to discovering that the flight is airborne, departure demand is predicted first using scheduled times from the Official 

Airline Guide (OAG) and then filed times after the flight operator files flight plan information.  This information can 

be supplemented by airline-provided updates to flight times via the Collaborative Decision Making (CDM) process.  

Departure predictions are currently inaccurate, as shown later in this paper, with flights departing both early and late 

relative to the predictions.  Improved predictions of when each flight will depart (or will be ready and want to 

depart) would directly improve traffic management decisions.   

For departures from most airports, there is no advance notice when flights will take off earlier than scheduled.  

When flights take off later than scheduled, only traffic managers in the FAA Air Traffic Control Tower (ATCT) 

know whether or not the flight has left the parking gate and, therefore, whether the late flight will take off shortly or 

not for at least the flight’s taxi time when it has not yet left the gate.  In a few airports, electronic flight strip (EFS) 
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systems, including the Departure Spacing Program (DSP), provide information to TRACON and ARTCC controllers 

and traffic managers about which aircraft are moving on the airport surface and their progress toward their departure 

runways.  Research is also in progress under the CDM Surface Management Sub-Team
§
 to use airport surface 

surveillance, such as the Airport Surface Detection Equipment – Model X (ASDE-X), to improve predictions of 

takeoff times using information about whether or not the flight has left the parking gate and its taxi progress toward 

a runway. 

These techniques provide a somewhat earlier observation of aircraft movement than waiting for the terminal area 

radar to detect the flight after takeoff.  How far in advance the takeoff time prediction is improved depends on the 

flight’s taxi time; the longer the taxi time, the earlier the takeoff time prediction is improved.  However, these 

techniques provide little benefit prior to aircraft leaving their parking gates.   Moreover, the required EFS or ASDE-

X systems are only available at a small number of airports. 

Furthermore, these techniques provide little benefit for airport surface traffic management.  On the airport 

surface, knowledge of departure demand means knowing when aircraft will push back from their parking gates.  

Whether a flight has left its gate may not be known to controllers and traffic managers in the ATCT until the flight 

reaches a handoff spot between ramp control and ATCT control. Surface geometry and local agreements about how 

responsibility is divided between the ATCT and air carrier or airport authority ramp towers or stations can further 

complicate this prediction.  In these cases, surface surveillance systems such as ASDE-X may not provide coverage 

of the ramps not controlled by the ATCT.  At other airports, knowledge that a flight represents actual demand on the 

airport surface starts when aircraft call for pushback (i.e., clearance to leave their parking gate).  

Currently, no advance warning is available when a flight will push back from its gate earlier than scheduled.   If 

a flight is late relative to its schedule, traffic managers in the ATCT usually have no information about how late the 

flight will be.  Air carriers who are CDM participants may modify the estimated gate departure times, but the 

accuracy of these modifications vary between the air carriers. 

II. Approach 

This paper describes an approach that improves the prediction of gate push back, or Out times, thereby 

improving the knowledge of departure demand at longer prediction horizons.  Moreover, the approach could be 

applied at every airport without installing expensive sensors or automation.  The approach uses data provided by the 

air carrier or National Airspace System (NAS) user.  These data describe when certain intermediate milestones in 

preparing for departure are completed.  Statistics for when these pre-departure events are expected prior to the actual 

Out time are compiled in advance from large amounts of historical data.  These statistics are then applied in real-

time to improve Out time predictions.  Results show significant potential benefits.  Some uncertainty in a flight’s 

gate departure time is unavoidable, for example if an aircraft experiences an unexpected mechanical problem shortly 

before planning to push back.  In these cases, the predicted Out time error may be very large, though no larger than 

the error would be under today’s systems.  The departure predictability for many flights may be improved by using 

information about the status of the departure preparations.  

This paper presents an algorithmic approach for applying pre-departure event times to improve block out, or gate 

push back, time predictions for individual flights.  The paper then describes the application of this method using 

Aircraft Communication Addressing and Reporting System (ACARS) messages from a large domestic air carrier at 

a busy airport.  ACARS messages that mark several pre-departure events were used in this study.  The paper 

presents results that show the benefit of applying this pre-departure information using the described algorithm to two 

existing automation systems that predict Out times – the Surface Management System (SMS) and the Enhanced 

Traffic Management System (ETMS).  SMS is a NASA/FAA research airport surface traffic management system.
2-5

  

ETMS is an FAA automation system widely used for national and regional traffic management.
6
 

The algorithm proposed in this paper could be used by an FAA automation system such as the ETMS.  Although 

pre-departure event information exists for many flights, the information is currently not easily available.  In addition 

to demonstrating the value of this information to traffic management systems, and an algorithm for improving 

departure demand predictions, a goal of this paper is to motivate progress toward a standard method for FAA traffic 

management systems to gain access to these air carrier data.  Currently, a mechanism already exists for flight 

operators to submit improved gate departure time estimates to ETMS; however, most operators do not have more 

accurate estimates.  Therefore, flight operators could use the proposed algorithm and provide ETMS with improved 

gate departure time estimates using the existing mechanism. 
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Figure 1 illustrates the current process for estimating gate push back time in SMS.  Figure 2 captures a possible 

implementation of the Out time prediction algorithm discussed in this paper.  The algorithm could be implemented 

within SMS, and the improved estimations of gate push back times could be sent to ETMS using the existing 

mechanism.  

This paper is organized as follows.  The next 

sections describe the data that were used in this study 

and an analysis of the accuracy of currently available 

gate departure time predictions.  The following sections 

present the algorithm for applying pre-departure events 

to improve gate departure time predictions and the 

process used to select the algorithm parameters.  Lastly, 

results of applying the algorithm to improve SMS and 

ETMS gate departure time predictions are presented and 

conclusions and opportunities for future research are 

listed. 

III. Data Collection 

The data sources for this analysis were SMS log files from Louisville (SDF) airport and ETMS data.  The SMS 

log files contain both the SMS predictions of gate departure times and the ACARS messages.  The ACARS Out 

message was used for the actual Out time.  The SMS log files and the ETMS data both contain the original 

scheduled data; SMS receives Aircraft Situation 

Display to Industry (ASDI) data which are a 

subset of the ETMS data. 

A total of 36 SMS log files were used for this 

study, covering portions of time from June 

through August, 2006.  Typically 4 SMS log files 

cover one day.  ETMS data were processed for the 

same time periods.  This research utilized two 

tools developed by Mosaic ATM, Inc.  The 

Surface Operations Data Analysis and Adaptation 

(SODAA) tool ingests SMS log files and raw 

surface surveillance data into a database and 

facilitates researchers’ construction and 

visualization of database queries.
7,8

  An ETMS 

parser and database allows ETMS orig files to be 

loaded into a database for research queries. 

Five pre-departure events – Crew on Board (ACARS Initialization), Crew on Board (Flight Plan Upload), Cargo 

Door Closed, Load Complete, and Crew Door Closed – were studied.  These events were chosen since they are the 

ACARS events recorded by the particular air carrier prior to gate push back.  The times for each of these events 

were obtained from ACARS messages recorded in the SMS log files.  The Crew on Board (ACARS Initialization) 

message is automatically generated by the aircraft when the pilots power on the ACARS system.  This is generally 

one of the first things the pilots do after entering the aircraft and, therefore, represents a reliable measure of when 

the crew boards the aircraft.  The Crew on Board (Flight Plan Upload) message is generated when the initial flight 

plan information is received by the aircraft via ACARS.  The Door Closed times come from messages automatically 

sent by the aircraft whenever the aircraft door is closed.  The Load Complete message is manually sent and, 

therefore, susceptible to human error.  The Load Complete event is generally expected after the Cargo Door Closed 

event and before the Crew Door Closed event, but these events may occur in different orders. 

Merging the SMS and ETMS data required matching the flights across the two different data sources.  For a 

flight to be used in this analysis, the flight was required to be found in both the SMS and ETMS data.  Moreover, the 

flight must have had at least one Crew on Board, Crew or Cargo Door Closed, or Load Complete ACARS message 

and have had an ACARS Out message.  Lastly, the flight must have had an original scheduled gate departure time in 

at least one of the data sources.  After merging the data sets, a total of 872 flights were studied.  The goal was to 

generate a sufficient flight set, not to perfect the flight matching.  A number of flights were discarded that could 

have been included using different processing.  For example, flights split across two SMS log files were discarded in 

 
Figure 2. Possible implementation of the out time 

prediction algorithm within SMS with improved 

estimated gate push back times being provided to 

ETMS. 

 

 
Figure 1. Current process for estimating gate push 

back times in SMS. 
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the present approach.  Note that all flights were from a single major air carrier and were departures from the single 

studied airport. 

Several queries were run against the SODAA and ETMS databases to produce tables of data: ACARS messages, 

SMS Out time predictions, ETMS messages, actual Out times (from the ACARS Out message), and original 

scheduled Out times.  Several simple programs were written to process and merge the data into the format necessary 

for running the Out time prediction algorithm.  

IV. Baseline Data 

To measure the improvements that ACARS data can provide, the current prediction accuracy attained without 

the use of ACARS data is calculated as a baseline.  Three current Out time prediction sources are studied –OAG, 

ETMS, and SMS.  The OAG scheduled time is equivalent to the initial ETMS scheduled time and the initial SMS 

gate time of departure, but the ETMS gate time may subsequently change as a result of CDM messages, flight plans, 

and time-out delay logic.  The following examines these three baselines and compares them to understand which 

data source provides the best predictions of Out times at various prediction horizons (i.e., amounts of time prior to 

the actual Out time). 

A. OAG Original Scheduled Gate Departure Time 

The OAG scheduled departure time, 

which is a gate departure time, not a 

scheduled takeoff time, is often used as a 

prediction of the flight’s block out time.  

It can be the only prediction of gate 

departure time for many hours until a 

flight plan is filed.  The first ACARS-

provided Out time is used as truth 

against which the prediction accuracy is 

measured.
**

 

Figure 3 illustrates the inaccuracy of 

the scheduled gate push back times for 

those flights included in this study.  

Flights rarely push back any earlier than 

15 minutes prior to their scheduled time, but 

they can push back quite a bit later, as 

illustrated in the right tail of the distribution.  

For this data set, flights pushed back on 

average 14 minutes later than their 

scheduled times. 

Figure 4 plots the percentage of flights 

for which the OAG scheduled departure 

time was within a specified accuracy 

window of the ACARS Out time.  The OAG 

data are static, provided 24 hours or more 

prior to the scheduled departure time.  

Therefore, there is no dependence on 

prediction horizon.  However, the graph is 

drawn as a function of time prior to ACARS 

Out time for consistency with later graphs.  

Each data series in the graph represents a 

prediction accuracy window. 

For example, the OAG scheduled 

departure time is within +/- 5 minutes of the 

                                                             
**

 A complete analysis of the ACARS data is beyond the scope of this paper.  In some situations, more than one 

ACARS Out message may be sent for a flight. 

 
Figure 3. Histogram of prediction errors for scheduled data. 

 
Figure 4. Gate push back time prediction accuracy of 

scheduled times for various accuracy windows. 
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actual Out time for only 25% of the flights.  Wider accuracy windows capture larger percentages of flights in the 

expected way.  But even at the widest accuracy window shown, +/- 60 minutes, not all of the flights are captured.  A 

total of 4.4% of the flights push back more than +/- 60 minutes from their OAG scheduled time. 

B. Enhanced Traffic Management System 

This section describes the use of the ETMS Estimated Gate Time of Departure (EGTD) as a prediction of Out 

time.  A variety of ETMS messages may be received prior to a flight leaving its parking gate and can modify the 

EGTD.  These messages include:  

• F – Filed flight plan 

• N – Airline-provided flight modification (CDM participants only) 

• B – Time-out delay logic triggered by ETMS once the current time is equal to or later than the estimated 

runway time of departure 

• A – Amended flight plan 

• E – Control Times Issued 

• Q – Airline-provided flight creation (CDM participants only) 

These updates should improve the prediction accuracy at shorter prediction horizons.  

Figure 5 plots the percentage of flights for which the ETMS EGTD was within the specified window of the 

actual Out time, as a function of time prior 

to actual Out time.  The ACARS Out time 

was again used as the actual Out time.  Each 

data series in the graph represents a 

prediction accuracy window.  For smaller 

accuracy windows (i.e., +/- 5 minutes and 

+/- 10 minutes), the prediction accuracy 

improves as the prediction horizon 

decreases.  However, for larger accuracy 

windows, the prediction accuracy initially 

improves with decreasing prediction horizon 

but then worsens for the shortest prediction 

horizons. 

The underlying flight data were analyzed 

to determine the cause of the prediction 

errors worsening in the last 10 minutes prior 

to the actual Out time.  The air carrier used 

in this study provided new “N” messages, or 

airline-provided CDM flight modification 

times, to ETMS close to the actual Out time.  

These schedule updates tended to predict a 

gate departure time later than when the 

flight actually departed.  Different carriers 

likely have different processes and systems for submitting flight modification data to ETMS and, therefore, this 

characteristic may be isolated to the air carrier studied in this paper.  However, our hypothesis based on this 

observation is that the prediction accuracy using ETMS data is not necessarily a reflection on ETMS processes and 

logic but rather a reflection on the quality of the data that airlines submit to ETMS.  

C. Surface Management System 

The last data source used as a baseline for Out time predictions was SMS.  Like ETMS, SMS relies on a 

scheduled time for its initial estimate of Out time.  SMS receives this scheduled time from ASDI or directly from the 

air carrier.  SMS receives some schedule updates directly from the air carrier.  Otherwise, SMS does not modify the 

estimated Out time unless the current time reaches the estimated Out time and the flight has not yet pushed back.  

SMS will then adjust the estimated Out time to remain equal to the current time until the flight pushes back.  This is 

typically referred to as time-out delay logic.  The SMS time-out delay logic runs every 10 seconds. 

Figure 6 plots the percentage of flights for which the SMS estimated Out time was within a specified accuracy 

window of the ACARS Out time, as a function of the prediction horizon.  Out prediction times improve on average 

as the prediction horizon is reduced.  The ASDI data used by SMS do not receive the updates to the ETMS EGTD.  

 
Figure 5. Gate push back time prediction accuracy of ETMS 

data for various accuracy windows. 



 

American Institute of Aeronautics and Astronautics 
092407 

 

6

Therefore, the effect of the air carrier’s schedule updates seen in the ETMS performance is not seen in the SMS 

performance. 

D. Comparison of Data Sources 

Comparison of the three current data sources for predicting Out times revealed that no one data source provides 

the most accurate predictions at all prediction horizons.  SMS and ETMS both outperform OAG scheduled data.  

SMS is, on average, always more accurate in 

predicting Out times than using the OAG 

scheduled time.  SMS improves on OAG 

scheduled data through the time-out logic and 

some schedule updates provided by the air 

carrier to SMS.  Since many more flights 

depart later than scheduled as opposed to 

earlier, the time-out delay logic is important 

and makes a significant impact on prediction 

accuracy at short prediction horizons.  The 

biggest difference between SMS and OAG 

scheduled data is for the shortest prediction 

horizons and smallest accuracy windows.  

SMS predicts almost 60% more flights within 

the +/-10 minute window than OAG 

scheduled data alone.  However, SMS does 

have a larger standard deviation of prediction 

errors and root mean square error (RMSE) 

than the OAG scheduled data for longer 

prediction horizons.  This is due to poor 

estimates in the schedule updates provided by 

the air carrier at longer time horizons. 

ETMS consistently provides better predictions (in terms of the percentage of flights within an accuracy window) 

than the OAG scheduled data for prediction horizons less than one hour.  As the prediction horizon increases, the 

benefit of using ETMS data over just the OAG scheduled data declines.  At prediction horizons between 60 and 90 

minutes (depending on the accuracy window), the OAG scheduled data become a better predictor than ETMS.    

Since ETMS starts with the OAG scheduled data, some ETMS data, subsequent to the scheduled data but more than 

an hour before the actual Out time, must cause this change in prediction accuracy.  The ETMS data were studied to 

find the cause, and it seems to be a result of how the air carrier submits flight modification messages to ETMS.  

Though individual CDM ‘N’ messages are 

sent for flights close to departure time, the 

air carrier also sends bulk ‘N’ messages for 

large groups of flights at particular points 

in time during the day.  These are usually 

for flights that are not expected to depart 

for many hours in the future.  These 

updates to gate departure times are actually 

slightly less accurate, on average, than the 

OAG scheduled gate departure times. 

Figure 7 shows the differences in 

prediction accuracy between SMS and 

ETMS.  A positive value indicates that 

SMS is more accurate than ETMS for that 

accuracy window and prediction horizon.  

Although the results vary with the accuracy 

window used, the trend is that SMS is, on 

average, more accurate for prediction 

horizons greater than 60 minutes and less 

than 30 minutes.  However, for prediction 

horizons between 30 minutes and 60 

 
Figure 6. Gate push back time prediction accuracy of SMS 

data for various accuracy windows. 

 

 
Figure 7. Prediction accuracy differences between SMS and 

ETMS data. 

 



 

American Institute of Aeronautics and Astronautics 
092407 

 

7

minutes, ETMS provides better predictions.  The exact prediction horizons at which the crossover occurs depends on 

the accuracy window. 

For longer prediction horizons, SMS outperforms ETMS because SMS is using the original scheduled data while 

ETMS is using updates that are actually worsening the prediction.  For short prediction horizons, SMS outperforms 

ETMS due to the SMS time-out delay logic.  Since many more flights depart later than scheduled as opposed to 

earlier, the time-out-delay logic is important and makes a significant impact on prediction accuracy at short 

prediction horizons.  Although ETMS also has time-out delay logic, there are two main differences between the 

SMS and ETMS logic that make SMS more accurate.  First, SMS applies the time-out delay logic every 10 seconds; 

ETMS applies the time-out delay logic every 5 minutes.  Consequently, ETMS can predict a flight’s Out time as 

being as much as 5 minutes before the current time.  Second, the SMS time-out delay logic is triggered once a flight 

misses its gate departure time.  ETMS does not start applying its time-out delay logic until the flight has missed its 

runway time of departure. Thus, for SDF, where taxi times are 14 minutes on average
††

, the SMS time-out delay 

logic is applied 14 minutes sooner than in ETMS.  In the middle prediction horizons, the updated gate times that 

ETMS receives through messages such as filed flight plans, flight plan amendments, and airline flight modifications 

– which are not available through the ASDI data that SMS uses – allow ETMS to outperform SMS.  

V. Block Out Time Prediction Algorithm 

This section describes the Out Time Prediction Algorithm that applies pre-departure event data – ACARS 

messages in the current study – to improve ETMS and SMS Out time estimates.  The algorithm is based on the 

observation that each type of pre-departure event will occur during a range of time prior to gate departure.   

The algorithm is described as follows: 

1) For each type of pre-departure event, the algorithm assumes the event occurs y minutes prior to actual Out time, 

where y is a random number described by a normal distribution.  The pre-departure events studied in this paper 

are five ACARS messages: ACARS Initialization Crew on Board, Flight Plan Information Received Crew on 

Board, Cargo Door Closed, Crew Door Closed, and Load Complete. 

2) For each event type, a sample set of data is analyzed to estimate the distribution (i.e., mean and standard 

deviation) for the amount of time prior to the actual Out time that the event is expected to occur. 

3) A confidence interval is used to define the range of 

times relative to the actual Out time in which the event 

is expected to occur.  The confidence interval is 

defined by min and max values, illustrated in Figure 8.  

For example, if the mean value is 20 minutes prior to 

the actual out time, the standard deviation is 5 

minutes, and a 95% confidence interval is used, then 

the minimum value would be 10 minutes (2 times the 

standard deviation from the mean) and the maximum 

value would be 30 minutes.  These min and max times 

are relative to the actual Out time.  Note that this 

approach does not require the distribution be normal; the min and max values may be selected without requiring 

symmetry relative to the mean.  

4) When an ACARS message is received for a flight, the algorithm evaluates whether the current Out time 

prediction should be changed.  The algorithm 

compares the difference between the event time and 

the current Out time prediction to the min and max 

values for that event type.   

a) If the current Out time prediction minus the 

event time is less than (or equal to) max and 

greater than (or equal to) min, the current Out 

time prediction is not changed. 

b) If the event time is later than min before the 

current Out time prediction, then the Out time 

prediction is moved later – to be the event time 

plus min, as shown in Figure 9. 

                                                             
††

 Bureau of Transportation Statistics, http://www.bts.gov/  

Figure 8. Definition of Min and Max Values. 

 
Figure 9. Application of late ACARS message. 
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c) If the event time is earlier than max before the current Out time prediction, then the Out time prediction is 

moved earlier – to be the event time plus max, as shown in Figure 10. 

5) The algorithm also uses time-out delay logic, which 

runs every minute.  Once a flight is within x minutes 

of the currently estimated Out time, the estimated Out 

time is pushed one minute later.  The value of x is 

dependent on the state of the flight (i.e., what events 

have already occurred for the flight).  For example, 

flights that are scheduled to operate but for which no 

ACARS messages associated with pre-departure 

events have been received will have a larger value for 

x than flights that have received a Crew on Board 

ACARS message.  The values of x are set based on 

analysis of the data.  Figure 11 illustrates the time-out 

delay logic. 

For each event type, the algorithm has three parameters 

– min, max, and x – that must be selected from analyzing 

historical pre-departure event data.  Note that these 

parameters may be different for different air carriers or 

airports.  Future research will study the robustness of the 

algorithm to these parameters and the set of characteristics 

(airport, flight operator, aircraft type, time of day, etc.) that 

should be used to define sets of parameters.  The algorithm 

was prototyped in Java and tested against the data used to 

generate the baseline prediction accuracy.  The following 

section describes the process of selecting the algorithm 

parameters.  The subsequent section compares the 

prediction accuracy using the algorithm with the baseline cases. 

VI. Identifying Algorithm Parameters 

This section discusses the approach used to select the algorithm parameters.  Each of the five ACARS message 

types evaluated as pre-departure events require three parameters: the minimum and maximum bounds on the 

expected range and the time-out delay parameter.  In addition, a time-out delay parameter is needed for use prior to 

any pre-departure event occurring. 

The distribution of the event time 

relative to the actual Out time was 

studied for each message type, to 

understand whether the time of the 

event relative to the actual Out time is 

sufficiently consistent and far enough 

before the actual Out time for the 

event to be a useful predictor of actual 

Out time.  For example, on average the 

Cargo Door Closed event occurred 

13.5 minutes prior to the actual Out 

time, with a standard deviation of 17.3.  

Figure 12 shows a histogram of the 

differences between the Cargo Door 

Closed times and actual Out times. 

Significant opportunity exists for 

future enhancements to the algorithm 

to better handle outliers.  In the current 

analysis, Cargo and Crew Door Closed 

and Load Complete messages for a 

Figure 10. Application of early ACARS 

message. 

 

Figure 11. Time-out delay logic. 

 

 
Figure 12. Distribution of actual Out time minus event time for 

cargo door closed events. 
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flight were only used if a Crew on Board message had previously been received, which resulted in a “filtered” data 

set. 

Based on analysis of the ACARS data, four of the ACARS message types were selected for use in the algorithm.  

The ACARS Initialization Crew on Board (M40) message was discarded as having too large a standard deviation.  

Figure 13 graphs the mean and standard deviation of each of those message types.  As expected, the closer an event 

typically happens to the actual Out time, the smaller the standard deviation.  

Several different 

metrics are useful for 

evaluating prediction 

accuracy – the percentage 

of flights with predictions 

within n minutes of the 

actual Out time, the mean 

of the prediction errors, 

the median of the 

prediction errors, the 

standard deviation of the 

prediction errors, and the 

RMSE.  The RMSE is a 

frequently-used measure 

of the differences between 

values predicted by a 

model or an estimator and 

the values actually 

observed from the thing 

being modeled or estimated. 

All of these statistics can be measured at times prior to the actual Out event.  Comparing two runs of the 

algorithm and judging which produced better predictions requires a single scalar statistic.  Instead of choosing one 

prediction horizon, an additional statistic was defined that combined the RMSE at various prediction horizons (nPH 

= number of prediction horizons), weighting each prediction horizon depending on the relative importance of 

accuracy in predictions that amount of time in advance.  This composite RMSE is defined in Eq. (1). 

 

  (1) 

The weighting values which were used are shown in Figure 14.  The highest weight was given to the time 

horizon of 10 minutes prior to actual Out as opposed to 5 minutes prior.  A good estimate at 10 minutes tends to 

result in a good estimate at 5 minutes, and our goal was to achieve strong estimates far enough in advance to support 

improved airport surface planning.  Further work includes analyzing the results achieved using different weighting 

factors. 

The approach to find the best value for each of the time-out 

delay parameters was to set all other parameters used by the 

algorithm to values that would not change the predicted Out time.  

The other time-out delay parameters were set to 0, as were the min 

values for each event type.  The max values were set to infinity.  

The one exception is the min parameter for the event type being 

evaluated for the time-out delay parameter.  The min parameter 

should always be greater than or equal to the time-out delay 

parameter.  For the event type being evaluated, the time-out delay 

parameter was set to various values, running the algorithm for each 

value.  If the event type also had a min parameter, the min parameter 

was set to the same value as the time-out delay parameter.  The 

value of the parameter that minimized the composite RMSE statistic 

was selected.  

 
Figure 13. Mean and standard deviation of Out time minus event time by 

message type. 

 

Minutes Prior to 

Actual Out 
Weight 

5 0.25 

10 0.5 

15 0.1 

20 0.05 

25 0.04 

30 0.03 

45 0.02 

60 0.01 

Figure 14. Weighting values used for 

the Composite RMSE. 
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For each event type, the approach used to find the best values for the min and max parameters was to set all of 

the parameters for the other event types to values that would not change the predicted Out time.  The time-out delay 

parameters were set to 0, as were the min values for each other event type.  The max values for each other event type 

were set to infinity – a value much larger than any possible value of the difference between the actual Out time and 

an ACARS event time.  For the event type being evaluated, the time-out delay parameter was set to the best value 

found in the prior step.  The min value was initially set equal to the time-out delay parameter.  The value of the max 

parameter was varied, running the algorithm for each value.  The value of the max parameter that minimized the 

composite RMSE statistic was selected.  Once the best value for the max parameter was found, this was held 

constant and the min parameter was varied until the best value was found.  

Other methods for selecting the parameters were also explored, either by evaluating the parameters in a different 

order or by setting previously evaluated parameters to their optimal value instead of 0.  Though different methods 

yield different parameters, when the algorithm was run using these different parameters, the composite RMSEs 

which resulted were not significantly different (e.g., 17.30 vs. 17.28).  This is an area that requires further research 

in order to determine the optimal method for finding all algorithm parameters. 

VII. Results 

After determining the best 

values for each of the 

algorithm parameters, the Out 

time prediction algorithm was 

run using these parameters 

and the results compared to 

the baseline cases.  Figure 15 

graphs the RMSEs (for 

various prediction horizons) 

for the original scheduled 

data alone, the SMS 

predictions alone, and the 

SMS predictions improved 

with ACARS data and the 

Out time prediction 

algorithm.   

The application of 

ACARS data through the Out 

time prediction algorithm 

improves the Out time predictions at all prediction horizons.  

Figure 17 shows the composite RMSE values for each data source.  The 

application of ACARS data using the proposed algorithm provides a 36% 

improvement to the 

SMS predictions 

and a 73% 

improvement to the 

OAG Schedule. 

How each 

individual 

parameter affects the results of the algorithm has not been 

studied yet.  Future work will include a sensitivity analysis 

to understand the robustness of the algorithm to parameter 

choices. 

Figure 16 graphs several statistics for each data source 

– the mean, median, RMSE, and standard deviation of the 

prediction errors made at 10 minutes prior to the actual Out 

times.  All statistics illustrate an improvement in prediction 

errors. 

Figure 18 graphs the percentage of flights at each 

Data Source 
Composite 

RMSE 

OAG Schedule 64.3 

SMS 27.0 

SMS w/ ACARS 17.3 

Figure 17. Composite 

RMSE values by data source. 

Figure 16. Prediction error statistics at 10 

minutes prior to Out. 

 

 
Figure 15. RMSE for SMS vs. SMS with ACARS Data. 



 

American Institute of Aeronautics and Astronautics 
092407 

 

11 

prediction horizon for which the predicted Out 

time is within +/-10 minutes of the actual Out 

time.  OAG data provides predictions of Out time 

within +/-10 minutes for only 40% of the flights 

for all time intervals.  SMS outperforms the OAG 

data only at the 5 and 10 minute prediction 

horizons.  SMS augmented with the ACARS data 

provides significant improvement in prediction 

accuracy for prediction horizons 20 minutes and 

less and some improvement for prediction 

horizons between 25 and 35 minutes.  

The benefit of applying ACARS pre-departure 

data to improve ETMS gate departure time 

predictions was also studied.  In addition to the 3 

previously discussed baseline cases (the OAG 

scheduled data alone, ETMS data alone, and the 

SMS predictions alone), an additional baseline 

case – SMS and ETMS combined – was created in 

order to understand the benefits of replacing the 

ASDI data feed with the ETMS data feed in SMS.  In addition to the prior test case (SMS improved with ACARS 

data), two additional test cases were studied – ETMS improved with ACARS data, and SMS and ETMS combined 

and improved with ACARS data.  The same algorithm parameters that were selected to apply the ACARS data to 

the SMS data were used for both of the additional test cases.  Since those parameters were tuned based on the SMS 

data, the prediction accuracy results achieved using these parameters with the ETMS data will not necessarily result 

in the best possible prediction accuracy.  

Figure 19 graphs the Out time prediction RMSEs (as a function of prediction horizon) for each of the data sets – 

the 4 baseline cases and 3 test cases.  The SMS with ACARS dataset performs as well or better than all other 

datasets at every prediction horizon.  The addition of ETMS data to the SMS data did not provide any additional 

benefits.   

 
Figure 20 charts the composite RMSEs for each of the datasets.  Theoretically, the ETMS data should provide 

additional benefits to both the SMS and SMS with ACARS data cases.  As discussed earlier, the cause was 

determined to be a characteristic which may be unique to the air carrier from which the present dataset was obtained.  

The CDM messages sent by the air carrier into ETMS were less accurate than the ETMS data prior to the CDM 

messages.  Different results would be expected if the estimates of Out time provided by the air carrier via CDM 

messages were more accurate. 

 
Figure 19. RMSE of Out time predictions over all datasets. 

 
Figure 18. Prediction accuracy within +/-10 minutes 

window. 
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Figure 21 graphs the percentage of flights, at each prediction horizon for which the predicted Out time is within 

+/-5 minutes of the actual Out time.  The three data sets that apply ACARS data all show a dramatic improvement in 

prediction accuracy over the data sets that do not incorporate pre-departure event data.  

 

VIII. Conclusion 

This paper presented an algorithm for using pre-departure event data to improve gate departure time predictions.  

The methodology using several ACARS messages was applied to improve SMS and ETMS Out time predictions, 

improving SMS predictions in terms of composite RMSE by 36%.  The approach is flexible and could be used with 

other pre-departure event data and to improve other existing gate departure time predictions.  Data from a single 

flight operator at a single airport was studied in detail.  The initial results presented in this paper demonstrate 

significant potential for the proposed technique.   

This research is being continued and a variety of future objectives have been identified.  First, we will perform a 

sensitivity analysis to understand how dependent the prediction improvement is on the algorithm parameters and, 

moreover, how dependent the optimal parameters are on the data set.  As part of this robustness analysis we will 

study additional data sets for several air carriers at multiple airports.  One challenge in wide application of the 

approach is that although the pre-departure event data exists broadly, it exists in different forms and is not available 

Figure 21. Prediction accuracy within +/-5 minutes window. 

 
Figure 20. Composite RMSE for each data source. 
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from a single source.  Future work will include identifying how standard pre-departure events/data is and 

determining whether other events and possibly other data sources may be more appropriate for some flight operators 

or airports.  For example, pre-departure clearance delivery time obtained from an EFS system may be a useful 

alternative or additional data source.  The method is also not limited to gate departure time predictions.  Future work 

may apply the methodology to improve the prediction of takeoff times at airports that do not have and will not 

receive detailed surface surveillance systems but that may have EFS. 
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